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Abstract. This paper examines one algorithm for sorting a row with-
out moves by counting. It is proposed a modification of this algo-
rithm, which decreases the number of increments. The modification 
is named SWM. On the base of SWM it is proposed a parallel algo-
rithm for sorting rows. The SWM algorithm is compared to Bubble 
sort, Insertion sort, Selection sort and Quick sort algorithms. The 
results show that proposed algorithm is faster than Bubble sort, In-
sertion sort and Selection sort but slower than Quick sort.

1. Introduction

It is considered that near 25% of the work of the com-
puter systems is sorting information [1]. This means that 
the searching of good methods and algorithms for sorting 
is very important. A lot of books and papers discuss advan-
tages and applications of sorting algorithms [1,2,3,4,5,6]. 
They could be implemented iteratively or recursively. Most 
of sorting algorithms use iterative approach for sorting in 
place by execution of swap operations in different condi-
tions [7,8,9,10,11,12,13]. The recursive approach is pre-
ferred for implementation of sorting algorithms which use 
divide-and-conquer technics, such as Quick sort and Merge 
sort [2,6,10,14,15]. According to the use of additional 
structures (arrays and others), sorting algorithms could be 
grouped into two major groups. In the first group fall algo-
rithms which sort data in place, i.e. without any additional 
data structure, such as Bubble sort, Insertion sort, Selection 
sort, Quick sort and other. Some modifications of sorting al-
gorithms which work in-place in order to decrease memory 
operation and energy consumption are developed last years 
[16,17]. The second group of algorithms includes sorting al-
gorithms which use additional data structure. The benefit of 
these algorithms is that they minimize memory operations 
(swap operations). In this category are sorting algorithms 
such as Bucket sort, Radix sort, algorithms which use tables 
of left or/and right inversions and etc. [1,2,18,19,20].

The aims of this paper are:
– to propose algorithms for sorting rows without 

moves by counting;
– to implement the proposed algorithms;
– to evaluate and compare experimentally these algo-

rithms with other algorithms.

2. Algorithm for Sorting of Rows 
without Moves by Counting

The proposed algorithm is as follows.
The array a[n] contains the initial data (elements).
The number of position of every element in a sorted 

row will be recorded in array p[n].

All initial values of the elements of the array p[n] are 1.
Each element ai, i = 1, 2,…, n, is compared with the 

elements of the row on the right side of it.
If ai>ak, k = i+1, i+2,…, n, the value in pj is increased 

with 1 (pi++).
If ai≤ak, k = i+1, i+2,…, n, the value in pk is increased 

with 1 (pk++).
The values pj, j = 1, 2,…, n, show the position of the 

element aj in the ascending order.
Example 1
Sort in ascending order the row with 10 elements: 60, 

80, 40, 30, 20, 90, 50, 100, 10, 70.
All initial values of the elements of the array p[10] are 1.
The first element a0 = 60 is bigger than five elements 

on the right side of it: 40, 30, 20, 50 and 10. Then 5 times 
the value in p0 is increased with 1. Thus the endmost value 
in p0 is 1+5 = 6. This is the position of the first element in 
the sorted row.

The first element a0 = 60 is less than 4 elements on the 
right side of it: 80, 90, 100 and 70. The values in the posi-
tions of these elements are increased with 1. So the value in 
p1, p5, p7 and p9 is 1+1 = 2.

The second element a1 = 80 is bigger than 6 elements 
on the right side of it: 40, 30, 20, 50, 10 and 70. Then 6 times 
the value in p1 is increased with 1. Thus the endmost value 
in p1 is 2+6 = 8. This is the position of the second element 
in the sorted row.

The second element a1 = 80 is less than 2 elements on 
the right side of it: 90 and 100. The values in the positions of 
these elements are increased with 1. So the value in p5 and 
p7 is 2+1 = 3.

The third element a2 = 40 is bigger than three elements 
on the right side of it: 30, 20 and 10. Then 3 times the value 
in p2 is increased with 1. Thus the endmost value in p2 is 1+3 
= 4. This is the position of the third element in the sorted row.

The third element a2 = 40 is less than four elements on 
the right side of it: 90, 50, 100 and 70. The values in the po-
sitions of these elements are increased with 1. So the value 
in p5 and p7 is 3+1 = 4, in p6 is 1+1 = 2 and in p9 is 2+1 = 3.

The 4-th element a3 = 30 is bigger than two elements 
on the right side of it: 20 and 10. Then 2 times the value in 
p3 is increased with 1. Thus the endmost value in p3 is 1+2 = 
3. This is the position of the 4-th element in the sorted row.

The 4-th element a3 = 30 is less than four elements on 
the right side of it: 90, 50, 100 and 70. The values in the po-
sitions of these elements are increased with 1. So the value 
in p5 and p7 is 4+1 = 5, in p6 is 2+1 = 3 and in p9 is 3+1 = 4.

The 5-th element a4 = 20 is bigger than one element on 
the right side of it: 10. The value in p4 is increased with 1. 
Thus the endmost value in p4 is 1+1 = 2. This is the position 
of the 5-th element in sorted the row.

The 5-th element a4 = 20 is less than four elements on 
the right side of it: 90, 50, 100 and 70. The values in the po-
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sitions of these elements are increased with 1. So the value 
in p5 and p7 is 5+1 = 6, in p6 is 3+1 = 4 and in p9 is 4+1 = 5.

The 6-th element a5 = 90 is bigger than three elements 
on the right side of it: 50, 10 and 70. Then 3 times the value 
in p5 is increased with 1. Thus the endmost value in p5 is 6+3 
= 9. This is the position of the 6-th element in the sorted row.

The 6-th element a5 = 90 is less than one element on 
the right side of it: 100. The value in the position of this 
element is increased with 1. So the value in p7 is 6+1 = 7.

The 7-th element a6 = 50 is bigger than one element 
on the right side of it: 10. The value in p6 is increased with 1. 
Thus the endmost value in p6 is 4+1 = 5. This is the position 
of the 7-th element in the sorted row.

The 7-th element a6 = 50 is less than two elements on 
the right side of it: 100 and 70. The values in the positions of 
these elements are increased with 1. So the value in p7 is 7+1 

= 8, and in p9 is 5+1 = 6.
The 8-th element a7 = 100 is bigger than two elements 

on the right side of it: 10 and 70. Then 2 times the value in 
p7 is increased with 1. Thus the endmost value in p7 is 8+2 = 
10. This is the position of the 7-th element in the sorted row.

The 8-th element a7 = 100 haven’t less elements on the 
right side of it. The values in the positions of the elements on 
the right are not changed. 

The 9-th element a8 = 10 haven’t bigger elements on 
the right side of it. The value 1 in p8 isn’t changed. The posi-
tion of a8 in sorted row is 1.

The 9-th element a8 = 10 is less than the last elements 
a9 on the right of it. The value in position c9 is increased with 
1 – 6+1 = 7.

The position of the 10-th element is 7. The value in 
c9 is increased with 1 for each element less than element a9.

3 
 

The position of the 10-th element is 7. The value in c9 is increased with 1 for each element 
less than element a9. 

 
Table 1. Finding the positions of the elements 60, 80, 40, 30, 20, 90, 50, 100, 10, 70 

 in the sorted row 

Positions j 0 1 2 3 4 5 6 7 8 9 
Values of aj 60 80 40 30 20 90 50 100 10 70 
Initial values 1 1 1 1 1 1 1 1 1 1 

Compares of a0 6 (5) 2 1 1 1 2 1 2 1 2 
Compares of a1  8 (6) 1 1 1 3 1 3 1 2 
Compares of a2   4 (3) 1 1 4 2 4 1 3 
Compares of a3    3 (2) 1 5 3 5 1 4 
Compares of a4     2 (1) 6 4 6 1 5 
Compares of a5      9 (3) 4 7 1 5 
Compares of a6       5 (1) 8 1 6 
Compares of a7        10 (2) 1 6 
Compares of a8         1 (0) 7 

Positions pj in sorted row 6 8 4 3 2 9 5 10 1 7 
 
Table 1 shows finding the positions of the elements of given row in sorted row. Each 

row of the table shows the current values of the positions p of the elements after termination 
of the compares of the current element. The cells in black contain the positions of the 
elements in the sorted row. In parentheses are written the numbers of elements less than 
corresponding element. 

The number of operations for finding the positions of the elements of the given row in 
sorted increased row is: 45 compares and 45 increments (records). 

Table 2 shows the sorted row. 
Table 2. Positions of the elements in sorted row and the sorted row 

 
Positions j 0 1 2 3 4 5 6 7 8 9 

Values of aj 60 80 40 30 20 90 50 100 10 70 
Positions pj in sorted row 6 8 4 3 2 9 5 10 1 7 

Sorted row 10 20 30 40 50 60 70 80 90 100 
 

The operations which are used in proposed algorithm are as follows: 
1) compares of the elements; 
2) records (increments) after comparing the current element with the elements on the 

right side;  
3) moves the elements in the positions of the sorted row. 
The number of the compares is: n(n-1)/2. 
The number of records (increments): is n(n-1)/2. 
The number of moves for building the sorted row is: n. 
If t1 is time to execute the operation compare, t2 is time to execute the operation record 

(increment), t3 is time to execute the operation move (record), the time for building the sorted 
row is 

T = (t1+t2)n(n-1)/2+t3n. 
 

3 
 

The position of the 10-th element is 7. The value in c9 is increased with 1 for each element 
less than element a9. 

 
Table 1. Finding the positions of the elements 60, 80, 40, 30, 20, 90, 50, 100, 10, 70 

 in the sorted row 

Positions j 0 1 2 3 4 5 6 7 8 9 
Values of aj 60 80 40 30 20 90 50 100 10 70 
Initial values 1 1 1 1 1 1 1 1 1 1 

Compares of a0 6 (5) 2 1 1 1 2 1 2 1 2 
Compares of a1  8 (6) 1 1 1 3 1 3 1 2 
Compares of a2   4 (3) 1 1 4 2 4 1 3 
Compares of a3    3 (2) 1 5 3 5 1 4 
Compares of a4     2 (1) 6 4 6 1 5 
Compares of a5      9 (3) 4 7 1 5 
Compares of a6       5 (1) 8 1 6 
Compares of a7        10 (2) 1 6 
Compares of a8         1 (0) 7 

Positions pj in sorted row 6 8 4 3 2 9 5 10 1 7 
 
Table 1 shows finding the positions of the elements of given row in sorted row. Each 

row of the table shows the current values of the positions p of the elements after termination 
of the compares of the current element. The cells in black contain the positions of the 
elements in the sorted row. In parentheses are written the numbers of elements less than 
corresponding element. 

The number of operations for finding the positions of the elements of the given row in 
sorted increased row is: 45 compares and 45 increments (records). 

Table 2 shows the sorted row. 
Table 2. Positions of the elements in sorted row and the sorted row 

 
Positions j 0 1 2 3 4 5 6 7 8 9 

Values of aj 60 80 40 30 20 90 50 100 10 70 
Positions pj in sorted row 6 8 4 3 2 9 5 10 1 7 

Sorted row 10 20 30 40 50 60 70 80 90 100 
 

The operations which are used in proposed algorithm are as follows: 
1) compares of the elements; 
2) records (increments) after comparing the current element with the elements on the 

right side;  
3) moves the elements in the positions of the sorted row. 
The number of the compares is: n(n-1)/2. 
The number of records (increments): is n(n-1)/2. 
The number of moves for building the sorted row is: n. 
If t1 is time to execute the operation compare, t2 is time to execute the operation record 

(increment), t3 is time to execute the operation move (record), the time for building the sorted 
row is 

T = (t1+t2)n(n-1)/2+t3n. 
 

Table 1 shows finding the positions of the elements of 
given row in sorted row. Each row of the table shows the 
current values of the positions p of the elements after termi-
nation of the compares of the current element. The cells in 
black contain the positions of the elements in the sorted row. 
In parentheses are written the numbers of elements less than 

corresponding element.
The number of operations for finding the positions of 

the elements of the given row in sorted increased row is: 45 
compares and 45 increments (records).

Table 2 shows the sorted row.

Table 1. Finding the positions of the elements 60, 80, 40, 30, 20, 90, 50, 100, 10, 70  in the sorted row

Table 2. Positions of the elements in sorted row and the sorted row

The operations which are used in proposed algorithm 
are as follows:

1) compares of the elements;
2) records (increments) after comparing the current el-

ement with the elements on the right side; 
3) moves the elements in the positions of the sorted 

row.
The number of the compares is: n(n-1)/2.
The number of records (increments) is: n(n-1)/2.
The number of moves for building the sorted row is: n.
If t1 is time to execute the operation compare, t2 is time 

to execute the operation record (increment), t3 is time to ex-

ecute the operation move (record), the time for building the 
sorted row is

T = (t1+t2)n(n-1)/2+t3n.

3. Modification of the Proposed 
Algorithm

When the position pi, i< n, of the element ai in sort-
ed row is defined it is obviously that the positions of the 
elements ak≥ai, k=i+1, i+2,…, n, can’t be less than pi+1. 
Therefore the value pi+1 can be assigned as current to the 
positions pк: pk = pi+1 when ak≥ai.
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When we find the position of the current element pi, 
i = 1, 2,…, n, and after assignments pk= pj+1 if ak≥ai, k = 
i+1, i+2,…, n, the set of elements (without the elements of 
which the positions in sorted row are defined) is divided to 
non-intersecting subsets. The elements of each of these sub-
sets have the same value of the current position.

This value is minimal value of position from the posi-
tions of the elements of given subset in sorted row.

The maximal possible value of position of the elements 
of given subset in sorted row is pq–2, where pq is the most near 
bigger minimal value of position of the elements of the set.

Each subset is information independent in the follow-
ing steps of the sorting.

Thus each value pi of the element ai, i = 1, 2,…, n, in 
sorted row is computed as:

– the value of pi, i = 1, 2,…, n–1  is assigned to d;
– the elements ak, k = i+1, i+2,…, n, less than or equal 

to ai (ai≥ak) with positions pk= d are counted: pi++;
– the indices of the elements ak>ai, k = i+1, i+2,…, n, 

with pk= d are stored;
– after finding the position pi (new value) to the posi-

tions of ak>ai, k = i+1, i+2,…, n, with pk= d (prior value of 
pi) are assigned the new value pi+1 (these are positions of the 
elements of which the indices are stored).

Thus (pk – d) increments will be avoided. But we must 
store the indices of the elements ak>ai, k = i+1, i+2,…, n, 
with pk=pi (prior value) and we must compare these ele-
ments with element ai.

Notice that in comparison with the basic algorithm in 
its modification the signs ‘≥’ and ‘<’ are exchange their plac-
es when we compare the elements ai and ak. Thus the num-
ber of stored indices is decreased – the indices of elements 
ak equal to ai are not stored.

The algorithm for building the sorted ascending row 
which realizes described above considerations is as follows.

The array a[n] contains the initial data.
The number of position of every element in a sorted 

row will be recorded in array p[n].
The array b[n] contains the indices of the elements 

ak>aj, k=j+1, j+2,…, n, with pk=pj (prior value).
All initial values of the elements of the array p[n] are 1.
1. i = 0.
2. k = i+1, j = 0, d = p[i].
3. If d = p(k) go to step 4. Otherwise go to step 5.
4. If a[i] ≥ a[k], p[i]++ and go to step 5. Otherwise b[i] 

= k, j++ and go to step 5.
5. If k > n–1, r = 0 and go to step 6. Otherwise k++ and 

go to step 3.
6. If r < j, p[b[r]] = p[i]+1 and go to step 7. Otherwise 

go to step 8.
7. r++ and go to step 6.
8. If i > n–1, end. Otherwise i++ and go to step 2.
The values of the elements pj, j=1,2,…,n, show the posi-

tions of the elements aj in sorted ascending row. The flowchart 
of the modified algorithm is shown on fig.1 and the proposed 
modified algorithm is illustrated with the example 1 in table 3.

We will explain the computation for the values in the 
row of the element a2.

p2 = 1 in the previous row (the row of the element a1 = 
80) is compared with pi, i = 3,9 ̅¯ of the elements on the right 
side of it.

4 from them are p3=p4=p6=p8=1=p2.
a2=40 is compared with a3=30, a4=20, a6=50, a8=10.
The elements 30, 20, 10 are less than 40. p2 is incre-

mented 3 times. The value of p2 in the row of a2 is 4. This is 
the position of the element 40 in sorted ascending row.

The element 50 is bigger than 40. Its index 6 is stored.
The value p3+1 = 4+1 = 5 is assigned to p6 in the row 

of a2: p6 = 5.
The other values of p5, p7, p9 in the row of a2 are the 

same as in the row of a1.
The number of operations for finding the position of 

the element a2 = 40 is: 4 compares, 3 records (increments), 1 
record (assignment), 1 record of index.

Let compare the number of operations of the example 
1 in both algorithms.

The number of operations of the basic algorithm is: 45 
compares and 45 increments.

Total number of operations is 90.

The number of operations of the modified algorithm is:
– 45 compares: 9 compares of the element a0 with the 

other elements and 36 compares of the current position of 
each of the other elements with the current positions of the 
elements on the right side of it;
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Table 3. Finding the positions of the elements 60, 80, 40, 30, 20, 90, 50, 100, 10, 70 in sorted ascending row 

Positions j 0 1 2 3 4 5 6 7 8 9 
Values of aj 60 80 40 30 20 90 50 100 10 70 
Initial values 1 1 1 1 1 1 1 1 1 1 

Compares of a0 6 (5) 7 1 1 1 7 1 7 1 7 
Compares of a1  8 (1) 1 1 1 9 1 9 1 7 
Compares of a2   4 (3) 1 1 9 5 9 1 7 
Compares of a3    3 (2) 1 9 5 9 1 7 
Compares of a4     2 (1) 9 5 9 1 7 
Compares of a5      9 (0) 5 10 1 7 
Compares of a6       5 (0) 10 1 7 
Compares of a7        10 (0) 1 7 
Compares of a8         1 (0) 7 

Positions pj in sorted row 6 8 4 3 2 9 5 10 1 7 
 
Let compare the number of operations of the example 1 in both algorithms. 
The number of operations of the basic algorithm is: 45 compares and 45 increments. 
Total number of operations is 90. 
The number of operations of the modified algorithm is: 
 45 compares: 9 compares of the element a0 with the other elements and 36 compares 

of the current position of each of the other elements with the current positions of the elements 
on the right side of it; 

 12 increments of the positions of the current elements; 
 11 compares of the current element with the elements of its subset; 
 8 records of the indices of the elements of the subset bigger than current element; 
 8 assignments of new values to the current positions of the elements bigger than 

current element. 
Total number of operations is 84. 
 
 
 
 
 
 
 
 

Table 3. Finding the positions of the elements 60, 80, 40, 30, 20, 90, 50, 100, 10, 70 in sorted ascending row



2 2018 35information technologies
and control

Figure 1. Flowchart of the modified algorithm
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Figure 1. Flowchart of the modified algorithm 

 
4. Parallel Modified Algorithm Подзаглавие І степен 

As it is mentioned after finding the position of the current element pj, j=1, 2,…, n, and 
assignments pk= pj+1 when ak≥aj, k=j+1, j+2,…, n, the set of the elements (without the 
elements which positions in sorted row are defined) is divided to t, t≤j+1, non-intersecting 
subsets. The elements of each of these sets have the same value of the current position. 

Each subset is information independent in the following steps of the sorting. In other 
words the task is decomposed to separated sub tasks. Their number is equal to the number of 
the sub sets. The sorting in all sub sets can be done simultaneously (in parallel). After finding 
q (q≤k) different values of the current positions the computation can continue with 
simultaneous sorting of the q subsets. 

Therefore after finding q subsets the sorting of given row can be executed with parallel 
algorithm. The sorting continues in each sub row of the row. The main processor of parallel 
computer system (PCS) defines q sub sets (each with the same values of current positions) and 
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– 12 increments of the positions of the current ele-
ments;

– 11 compares of the current element with the ele-
ments of its subset;

– 8 records of the indices of the elements of the subset 
bigger than current element;

– 8 assignments of new values to the current positions 
of the elements bigger than current element.

Total number of operations is 84.

4. Parallel Modified Algorithm

As it is mentioned after finding the position of the 
current element pj, j=1, 2,…, n, and assignments pk= pj+1 
when ak≥aj, k=j+1, j+2,…, n, the set of the elements (with-
out the elements which positions in sorted row are de-

fined) is divided to t, t≤j+1, non-intersecting subsets. The 
elements of each of these sets have the same value of the 
current position.

Each subset is information independent in the follow-
ing steps of the sorting. In other words the task is decom-
posed to separated sub tasks. Their number is equal to the 
number of the sub sets. The sorting in all sub sets can be 
done simultaneously (in parallel). After finding q (q≤k) dif-
ferent values of the current positions the computation can 
continue with simultaneous sorting of the q subsets.

Therefore after finding q subsets the sorting of given 
row can be executed with parallel algorithm. The sorting 
continues in each sub row of the row. The main processor 
of parallel computer system (PCS) defines q sub sets (each 
with the same values of current positions) and transfer the 
elements of each subset to one from other processors of the 
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transfer the elements of each subset to one from other processors of the PCS. Each of these 
processors sorts elements of its subset. The main processor sort one of the subsets too. 

Each processor which is sorts one of the subsets also can transfers the elements of some 
subsets of its subset to other processors of the PCS. 

Thus computation will be accelerated because of simultaneously sorting of the sub rows. 
Example 2 
Sort in ascending order the row with 10 elements: 50, 20, 80, 40, 70, 10, 100, 90, 30, 

60. 
After finding the position 5 of the number 50 the elements of the row are divided in 2 

sub sets: 20, 40, 10, 30 with current position 1 and 80, 70, 100, 90, 60 with current position 6. 
The elements of the first sub set are less than 50 and their positions can’t be bigger than 5. 
Both sub rows are independent and they can be computed in parallel. 

The positions of the elements 20 and 80 can be computed simultaneously. They are 
respectively 2 and 8. The independent sub rows are already 4: 40, 30 with current position 3; 
70 and 60 with current position 6, 10 with current position 1; 100 and 90 with current position 
9. The sub row with current position 1 has one element – 10. So this position is its position in 
sorted row. 

The positions of the elements 40, 70 and 100 can be found simultaneously. Their 
positions are respectively 4, 7 and 9. The other elements are 30, 60 and 90. They are in 
different sub rows. So their positions in sorted row are respectively 3, 6 and 9. The sorting is 
ended. 

Table 4 illustrates the parallel algorithm for the row in example 2. 
It is seen that the consecutive algorithm is executed for (n–1) steps. In each step is 

found the position of one element. The row in example 1 is executed for 9 steps. 
 

Table 4. Parallel computation the positions of the elements of the row 
50, 20, 80, 40, 70, 10, 100, 90, 30, 60 in sorted increased row 

 

Positions j 0 1 2 3 4 5 6 7 8 9 
Values of aj 50 20 80 40 70 10 100 90 30 60 
Initial values 1 1 1 1 1 1 1 1 1 1 

Compares of a0 5 (4) 1 6 1 6 1 6 6 1 6 
Compares of a1, a2  2 (1) 8 (2) 3 6 1 9 9 3 6 

Compares of а3, a4, а6    4 (1) 7 (1)  10 (1) 9 3 6 
Positions pj in sorted row 5 2 8 4 7 1 10 9 3 6 

 
The row in example 2 is executed for 3 steps with the parallel algorithm: 
 in first step is found position of element 50; 
 in second step are found positions of elements: 20, 80, 10; 
 in third step are found positions of elements: 40, 70, 100, 30, 60, 90. 
 

5. Experimental Results Подзаглавие І степен 
The proposed modified algorithm for sorting without moves is implemented on C++, 

MS Visual Studio 2005 Version 8. For experiments is used computer system with processor 
Intel Celeron E3300 2,5GHz, RAM 3 GB. The elements of the rows are generated by the 
function rand() and srand(). The number of the elements of the rows for these experiments is 
from 1000 to 10000. 

We named the proposed algorithm SWM. SWM and four known algorithms sort 10 
times 10 different rows. The execution time is the averaged value. 

Table 4. Parallel computation the positions of the elements  
of the row 50, 20, 80, 40, 70, 10, 100, 90, 30, 60 in sorted increased row

Table 5. Averaged execution time
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Table 5 and figure 2 show the results from experiment. 
 

Table 5. Averaged execution time 

Number of the  
elements 

Algorithms 
1000 2000 3000 4000 5000 6000 7000 8000 9000 10 000 

Bubble sort 0,0143 0,0498 0,1062 0,1887 0,2957 0,4275 0,5717 0,7437 0,9671 1,183 

Insertion sort 0,0014 0,0053 0,0121 0,0204 0,0327 0,0474 0,0632 0,0821 0,1093 0,1277 

Selection sort 0,006 0,0243 0,0534 0,0948 0,1486 0,2052 0,2833 0,367 0,4694 0,5909 

Quick sort 0,0002 0,0004 0,0008 0,0008 0,0008 0,001 0,0011 0,0016 0,0018 0,002 

SWM 0,0011 0,003 0,0064 0,0115 0,0172 0,0251 0,0348 0,0463 0,0532 0,072 

 

 

Figure 2. Experimental results 
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PCS. Each of these processors sorts elements of its subset. 
The main processor sort one of the subsets too.

Each processor which is sorts one of the subsets also 
can transfers the elements of some subsets of its subset to 
other processors of the PCS.

Thus computation will be accelerated because of si-
multaneously sorting of the sub rows.

Example 2
Sort in ascending order the row with 10 elements: 50, 

20, 80, 40, 70, 10, 100, 90, 30, 60.
After finding the position 5 of the number 50 the el-

ements of the row are divided in 2 sub sets: 20, 40, 10, 30 
with current position 1 and 80, 70, 100, 90, 60 with current 
position 6. The elements of the first sub set are less than 50 
and their positions can’t be bigger than 5. Both sub rows are 
independent and they can be computed in parallel.

The positions of the elements 20 and 80 can be com-

puted simultaneously. They are respectively 2 and 8. The 
independent sub rows are already 4: 40, 30 with current po-
sition 3; 70 and 60 with current position 6, 10 with current 
position 1; 100 and 90 with current position 9. The sub row 
with current position 1 has one element – 10. So this position 
is its position in sorted row.

The positions of the elements 40, 70 and 100 can be 
found simultaneously. Their positions are respectively 4, 7 
and 9. The other elements are 30, 60 and 90. They are in 
different sub rows. So their positions in sorted row are re-
spectively 3, 6 and 9. The sorting is ended.

Table 4 illustrates the parallel algorithm for the row in 
example 2.

It is seen that the consecutive algorithm is executed 
for (n–1) steps. In each step is found the position of one ele-
ment. The row in example 1 is executed for 9 steps.

The row in example 2 is executed for 3 steps with the 
parallel algorithm:

– in first step is found position of element 50;
– in second step are found positions of elements: 20, 

80, 10;
– in third step are found positions of elements: 40, 70, 

100, 30, 60, 90.

5. Experimental Results

The proposed modified algorithm for sorting without 
moves is implemented on C++, MS Visual Studio 2005 

Version 8. For experiments is used computer system with 
processor Intel Celeron E3300 2,5GHz, RAM 3 GB. The el-
ements of the rows are generated by the function rand() and 
srand(). The number of the elements of the rows for these 
experiments is from 1000 to 10000.

We named the proposed algorithm SWM. SWM and 
four known algorithms sort 10 times 10 different rows. The 
execution time is the averaged value.

Table 5 and figure 2 show the results from experiment.
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6. Conclusion

Experimental results show that algorithm SWM is not 
competitive to the best algorithm for sorting (quick sort). 
But it is faster than Bubble sort, Insertion sort and Selection 
sort. SWM algorithm has one valuable feature: after finding 
the position of some element in sorted row the rest elements 
are divided into information independent sub sets. Therefore 
after finding the position of q element in sorted row, q<<n, 
the sorting in all sub sets can be done simultaneously (in 
parallel) with one of the most algorithms.

The future work will continue with:
1) analysis of the complexity of the proposed algo-

rithm SWM;
2) implementation of proposed parallel algorithms 

SWM;
3) implementation of parallel algorithms on the base of 

SWM and quick sort.
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Table 5. Averaged execution time 

Number of the  
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Algorithms 
1000 2000 3000 4000 5000 6000 7000 8000 9000 10 000 
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Quick sort 0,0002 0,0004 0,0008 0,0008 0,0008 0,001 0,0011 0,0016 0,0018 0,002 
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