
2 2018 25information technologies
and control

Large Data Storing and Processing
Approach

K. Shvertner

Key Words: Increasing DB response time; In-Memory Databas-
es; Data Base machines; Exadata DB machine; Hana DB; Oracle
In-Memory DB.

Abstract. The growth of data volumes and the need for fast analyt-
ical data processing lead to significant efforts to answer effectively
these major challenges. It is known that Data Processing plays key
role and is the leading motivation for the research and development
in software and hardware technologies. Now there are new trends
in databases technologies: large data processing and in-memory
option in the database functionality. The In-Memory functionality
leads to new approaches in the data processing algorithms and da-
tabase architecture. The paper observes also big improvements in
the hardware: complex engineered data base machines (Exadata,
Exalytics) and even special enhancements in the processor archi-
tecture (SPARC M7). Also for first time a new database was de-
signed and successfully implemented in Europe – the SAP HANA.

Introduction

Most data collected by organizations used to be trans-
action data that could easily fit into rows and columns of
relational database management systems (DBMS). From
other hand the traditional tool for analyzing corporate data
for the past two decades has been the data warehouse. A data
warehouse is a database that stores current and historical
data of potential interest to decision makers throughout the
company. The volume of these data is very large.

In the contemporary Data Processing another types of
processing arts become also quite common. One is the CRM
(Customer Relationship Management – needs high speed re-
trieval of customer data). The second are high access speed
operational data used by fire services, police departments
etc. (high speed retrieval of massive data chunks). The third
are control and military systems where the reaction time
plays vital role. These challenges lead to new approaches in
data processing.

One way is to use database machines with autonomous
intelligence oriented to do fast data retrieval (part 3). An-
other way are the in-memory options of the databases. Both
approaches combine columnar storage of the table data, ad-
vanced columnar data compression (part 4, 5). It is important
to mention that the some of the contemporary computer pro-
cessors have functionalities that allows search in enormous
big data chunks if the data is stored sequential in the RAM.

In the past the data repository resides on hard disk de-
vices. The new way of facilitating large data analysis is to use
in-memory computing, which relies primarily on a comput-
er’s main memory (RAM) for data storage. The applications
programs access data stored in system primary memory,
thereby eliminating bottlenecks from retrieving and reading
data in a traditional, disk-based database and dramatically
shortening query response times. In-Memory processing

makes it possible for very large sets of data, amounting to
the size of a data mart or small data warehouse, to reside en-
tirely in memory. Complex business calculations that used to
take hours or days are able to be completed within seconds,
and this can even be accomplished using handheld devices.

Now there are advances in contemporary computer
hardware technology that make In-Memory processing pos-
sible, such as powerful high-speed processors, multicore
processing, and falling computer memory prices. These
technologies help companies optimize the use of memory
and accelerate processing performance while lowering costs.

Leading commercial products for In-Memory com-
puting include SAP HANA and Oracle In-Memory option.
Each provides a set of integrated software components, in-
cluding In-Memory database software and specialized ana-
lytic software, run on hardware optimized for In-Memory
computing work.

The article is an introduction review of the new archi-
tecture and new functionalities of the most complex systems
in the IT – the Data Bases. In next article we will report
more technical data, observations and comparisons of the
different approaches.

1. Basic Concepts of In-Memory
Technology

In-Memory means that the data (or the most frequent-
ly accessed data) reside in the main memory (RAM) of the
database server. The basic idea is that memory is much fast-
er than disk, actually it is times faster. A 2014 CPU has a
memory bandwidth of 10 GByte/sec and higher, a single
disk around 150 MByte/sec – difference by factor 70. If the
program is using the same memory frequently, it is cached
inside the CPU’s L1 or L2 cache, speeding up the memory
bandwidth by another factor of 10. On the contrary the disk
speed of 150 MB/sec is for sequential read access only, ran-
dom access is times worse for a disk system whereas has no
negative impact on the RAM.

The downside of memory is the costs of the memory
chip itself (7 USD/GByte for RAM compared to 0.05 USD/
GByte for disks as of 2014) and the hardware platform you
need, in order to cope with more memory, is getting increas-
ingly more expensive also.

On the other hand, if the company need 1TB of RAM
that would be 7000 USD. While this is much money com-
pared to a single 100 USD disk, it is not much in terms of
absolute numbers.

So from expenses point of view the hard disk memory
is preferable, but from the data processing speed point of
view the RAM based data have preference. Nothing new –

Print ISSN: 1312-2622; Online ISSN: 2367-5357
DOI: 10.1515/itc-2018-0008

2 201826 information technologies
and control

this is known fact in the computer science! The only news
is that nowadays the big amounts of RAM are affordable for
the shops.

2. Early and Alternative Variants
of In-Memory

The system administrators and designers always has
tried to use the RAM for keeping of data (caching).

All UNIX-like systems analyze the unused portion of
the RAM and store data about size and location of the free
RAM extents. If such free extents exist the OS are placing
there temporarily the most frequently accessed blocks from
the disks without to distinguish blocks needed for the OS
and blocks needed for the applications. So the number of the
physical read and write operations decrease. But if there are
need of RAM this area is emptied and the blocks are stored
back to the disk without any possibility to manage this pro-
cess. Nevertheless the RAM is used in the whole extent and
the physical access to the disks decreases which increases
the speed of the data processing.

Another approach used in the databases is to keep the
frequently used data files in the RAM (if there are enough
free extents). The association of the files to the applications
(the so called table spaces) allows to distinguish the files
belonging to different applications and open the possibility
to place some files in the RAM instead on disks.

On table level of the databases it is possible the fre-
quently used tables to be placed in the RAM (in Oracle this
is the SGA – System Global Area). Additionally in the RAM
is possible to keep the results of the data processing (in Or-
acle – Result Sets). So if the data in the tables after the last
processing are not changed the application is provided with
the last result of the data processing instead of repeating the
slow and expensive process of data retrieval.

3. New Challenges in Data Processing,
New Ways

Small business works with small volume of data, the big
business – big volume of data, the continental or global busi-
ness – an ocean of data and gigantic data processing. To be
compliant the needs of the big businesses the supplier of the
data bases are trying to develop adequate software tools, in
some cases also with hardware appliances in which are united
all hardware and network components for the data processing.

These appliances comprises processors, RAM, disk
memory with enhanced advanced architecture, some net-
work circles (one for superfast inter component communica-
tion, another for the applications access), integrated storage
chips (cache) with very fast access (approaching the speed
of the RAM) for caching the most frequently used disk
blocks. In these appliances the notion disk is replaced with
the notion intelligent cell – a set of 12 classical disk devic-
es, which works as one unit and poses intelligence provid-
ed by two powerful Intel Xeon processors. The intelligence

has many functions (automatic compression of the disc data,
automatic indexing of part of the tables and automated sup-
port of different indexes over different parts of a single table,
automatic caching in the in the cache memory the most fre-
quently read disk data blocks).

The most important advantage of these appliances is
that the data processing is done in the disc cells from the
mentioned processors. So is avoided the transfer of the data
via the network the disk blocks to the RAM and main pro-
cessors. Instead a special selective protocol is used (known
as iSQL) and the data base is provided with retrieved data
and results. This significantly lowers the data transfer by the
processing (from one hand because the work of addition-
al processors in the disc cell, from other hand because the
parallel usage all the discs in one cell). This technology is
implemented in Oracle Exadata, but it is used from other
hardware providers. The big disadvantage of such applianc-
es is the big price and that it is hard to expand such systems.

Another approach are the In-Memory databases. The
basic ideas here are many, but some of them are important.
The In-Memory databases give the possibility to place in the
RAM whole tables (and in some cases part of the columns
of some tables) and to leave other tables (in some cases other
table columns) on the discs. This choice is a new challenge
to the system administrators because they need to know in
details the application, the data structure and the data pro-
cessing. From other side they need to know in details the
hardware landscape.

The paper presents some features of the In-Memory
database HANA of the German Company SAP and Oracle.
Other providers like IBM и Microsoft have also In-Memory
Data Bases but SAP HANA and Oracle are the most common.

4. SAP HANA In-Memory Database

The SAP HANA database supports two types of table:
those that store data either column-wise (column tables) or
row-wise (row tables). SAP HANA is optimized for column
storage.

Figure 1. Principle of Row- and Column-Based Storage
for a Table

2 2018 27information technologies
and control

Conceptually, a database table is a two dimensional
data structure with cells organized in rows and columns.
Computer memory however is organized as a linear se-
quence. For storing a table in linear memory, two options
can be chosen as shown below. A row store stores a sequence
of records that contains the fields of one row in the table. In
a column store, the entries of a column are stored in contig-
uous memory locations.

In the SAP HANA database, tables that are organized
in columns are optimized for high-performing read opera-
tions while still providing good performance for write oper-
ations. Efficient data compression is applied to save memory
and speed up searches and calculations. Furthermore, some
features of the SAP HANA database, such as partitioning,
are available only for column tables. Column-based storage
is typically suitable for big tables with bulk updates. How-
ever, update and insert performance is better on row tables.
Row-based storage is typically suitable for small tables with
frequent single updates.

The approach to highlight the criteria to be used to de-
cide whether a table should be a colon or a sequence is as
follows:

• Column type storage – when to use: Calculations are
typically executed on individual or a small number of col-
umns; The table is searched based on the values of a few
columns; The table has a large number of columns; The ta-
ble has a large number of rows and columnar operations are
required (aggregate, scan, and so on High compression rates
can be achieved because the majority of the columns contain
only a few distinct values (compared to the number of rows).

• Row type storage – when to use: The application
needs to process only one single record at one time (many
selects and/or updates of single records); The application
typically needs to access the complete record; The columns
contain mainly distinct values so compression rate would be
low; Neither aggregations nor fast searching are required;
The table has a small number of rows (for example, config-
uration tables).

It is important to note, that the SAP HANA database
allows row tables to be joined with column tables. However,
it is more efficient to join tables of the same storage type. It
is possible to change an existing table from one storage type
to the other (ALTER TABLE ALTER TYPE).

SAP HANA supports history tables which allow que-
ries on historical data (also known as time-based queries).

History tables are special database tables that only al-
low inserts. Write operations on history tables do not physi-
cally overwrite existing records. Instead, write operations al-
ways insert new versions of the data record into the database.
The most recent versions in history tables are called current
data. All other versions of the same data object contain his-
torical data. Each row in a history table has timestamp-like
system attributes that indicate the time period when the re-
cord version in this row was the current one. Historical data
can be read by requesting the execution of a query against
a historical view of the database (SELECT ... AS OF time).

Memory management – the column store is the part
of SAP HANA database that manages data organized in col-

umns in memory. Tables created as column tables are stored
here.

The column store is optimized for read operations but
also provides good performance for write operations. This is
achieved through 2 data structures: main storage and delta
storage.

The main storage contains the main part of the data.
Here, efficient data compression is applied to save memo-
ry and speed up searches and calculations. Write operations
on compressed data in the main storage would however be
costly. Therefore, write operations do not directly modify
compressed data in the main storage. Instead, all changes are
written to a separate data structure called the delta storage.
The delta storage uses only basic compression and is opti-
mized for write access. Read operations are performed on
both structures, while write operations only affect the delta.

Figure 2. Main Storage and Delta Storage

The purpose of the delta merge operation is to move
changes collected in the delta storage to the read-optimized
main storage. After the delta merge operation, the content
of the main storage is persisted to disk and its compression
recalculated and optimized if necessary.

A further result of the delta merge operation is trunca-
tion of the delta log. The delta storage structure itself exists
only in memory and is not persisted to disk. The column
store creates its logical redo log entries for all operations
executed on the delta storage. This log is called the delta
log. In the event of a system restart, the delta log entries are
replayed to rebuild the in-memory delta storages. After the
changes in the delta storage have been merged into the main
storage, the delta log file is truncated by removing those en-
tries that were written before the merge operation. As only
data in memory is relevant, the load status of tables is sig-
nificant. A table can have one of the following load statuses:

• Unloaded, that is, none of the data in the table is load-
ed to main memory.

• Partly loaded, that is, some of the data in the table is
loaded to main memory, for example, a few columns recent-
ly used in a query.

• Fully loaded, that is, all the data in the table is loaded
into main memory.

The SAP HANA database aims to keep all relevant
data in memory. Standard row tables are loaded into mem-
ory when the database is started and remain there as long
as it is running. They are not unloaded. Column tables, on
the other hand, are loaded on demand, column by column

2 201828 information technologies
and control

when they are first accessed. This is sometimes called lazy
loading. This means that columns that are never used are not
loaded and memory waste is avoided.

This is the default behavior of column tables. In the
metadata of the table, it is possible to specify that individual
columns or the entire table are loaded into memory when the
database is started.

The database may actively unload tables or individu-
al columns from memory, for example, if a query or other
processes in the database require more memory than is cur-
rently available. It does this based on a least recently used
algorithm.

The Delta Merge operation – Write operations are
only performed on the delta storage. In order to transform
the data into a format that is optimized in terms of memory
consumption and read performance, it must be transferred to
the main storage. This is accomplished by the delta merge
operation.

Figure 3 shows the different steps in the merge pro-
cess, which objects are involved, and how they are accessed.

Figure 3. The Delta Merge Process

Before the merge operation, all write operations go to
Delta 1 storage and all read operations read from Main 1 and
Delta 1 storages.

While the merge operation is running, the following
happens:

• All write operations go to the second delta storage,
Delta 2.

• Read operations read from the original main storage,
Main 1, and from both delta storages, Delta 1 and Delta 2.

• Uncommitted changes in Delta1 are copied to Delta 2.
• The content of Main 1 and the committed entries in

Delta 1 are merged into the new main storage, Main 2.
After the merge operation has completed, the follow-

ing happens:
• Main 1 and Delta 1 storages are deleted.
• The compression of the new main storage (Main 2)

is reevaluated and optimized. If necessary, this operation re-
orders rows and adjust compression parameters. If compres-
sion has changed, columns are immediately reloaded into
memory.

• The content of the complete main storage is persisted
to disk.

With this double buffer concept, the table only needs
to be locked for a short time: at the beginning of the process
when open transactions are moved to Delta2, and at the end
of the process when the storages are “switched”.

The minimum memory requirement for the delta merge
operation includes the current size of main storage plus fu-

ture size of main storage plus current size of delta storage
plus some additional memory. It is important to understand
that even if a column store table is unloaded or partly loaded,
the whole table is loaded into memory to perform the delta
merge. The performance of the delta merge depends on the
size of the main storage. This size can be reduced by split-
ting the table into multiple partitions, each with its own main
and delta storages.

The standard method for initiating a merge in SAP
HANA is the auto merge. A system process called merge-
dog periodically checks the column store tables that are
loaded locally and determines for each individual table (or
single partition of a split table) whether or not a merge is
necessary based on configurable criteria (for example, size
of delta storage, available memory, time since last merge,
and others).

If an application powered by SAP HANA requires
more direct control over the merge process, SAP HANA
supports a function that enables the application to request the
system to check whether or not a delta merge makes sense
now. This function is called smart merge. For example, if
an application starts loading relatively large data volumes, a
delta merge during the load may have a negative impact both
on the load performance and on other system users. There-
fore, the application can disable the auto merge for those
tables being loaded and send a “hint” to the database to do a
merge once the load has completed.

The database can trigger a critical merge in order to
keep the system stable. For example, in a situation where
auto merge has been disabled and no smart merge hints are
sent to the system, the size of the delta storage could grow
too large for a successful delta merge to be possible. The
system initiates a critical merge automatically when a cer-
tain threshold is passed.

The delta merge operation for column tables is a poten-
tially expensive operation and must be managed according
to available resources and priority. This is the responsibility
of the merge monitor.

The system uses cost functions to decide which table
to merge, when, and in which order. There are also cost func-
tions that control how many tables are merged at the same
time and how many threads are used to merge a single table.

The merge monitor is responsible for controlling all
merge requests for all column tables on a single host. In a
distributed system, every index server has its own merge
monitor.

Data compression in the column store – The column
store allows for the efficient compression of data. This makes
it less costly for the SAP HANA database to keep data in
main memory. It also speeds up searches and calculations.
Data in column tables can have a two-fold compression:

• Dictionary compression – This default method of
compression is applied to all columns. It involves the map-
ping of distinct column values to consecutive numbers, so
that instead of the actual value being stored, the typically
much smaller consecutive number is stored.

• Advanced compression – Each column can be further
compressed using different compression methods, namely

2 2018 29information technologies
and control

prefix encoding: run length encoding (RLE), cluster en-
coding, sparse encoding, and indirect encoding. The SAP
HANA database uses compression algorithms to determine
which type of compression is most appropriate for a column.

Advanced compression is applied only to the main
storage of column tables. As the delta storage is optimized
for write operations, it has only dictionary compression
applied. Compression is automatically calculated and opti-
mized as part of the delta merge operation.

Table partitioning – The partitioning feature of the
SAP HANA database splits column-store tables horizontally
into disjunctive sub-tables or partitions. In this way, large
tables can be broken down into smaller, more manageable
parts. Partitioning is typically used in multiple-host systems,
but it may also be beneficial in single-host systems. When a
table is partitioned, the split is done in such a way that each
partition contains a different set of rows of the table. There
are several alternatives available for specifying how the
rows are assigned to the partitions of a table, for example,
hash partitioning or partitioning by range. The following are
the typical advantages of partitioning:

• Load balancing in a distributed system – Individu-
al partitions can be distributed across multiple hosts. This
means that a query on a table is not processed by a single
server but by all the servers that host partitions.

• Overcoming the size limitation of column-store ta-
bles – A non-partitioned table cannot store more than 2 bil-
lion rows. It is possible to overcome this limit by distribut-
ing the rows across several partitions. Each partition must
not contain more than 2 billion rows.

• Parallelism – Partitioning allows operations to be
parallelized by using several execution threads for table.

• Partition pruning – Queries are analyzed to determine
whether or not they match the given partitioning specifica-
tion of a table. If a match is found, it is possible to determine
the actual partitions that hold the data being queried. Using
this method, the overall load on the system can be reduced,
thus improving the response time.

• Improved performance of the delta merge operation
which depends on the size of the main index. If data is only
being modified on some partitions, fewer partitions will need
to be delta merged and therefore performance will be better.

• Explicit partition handling - Applications may ac-
tively control partitions, for example, by adding partitions to
store the data for an upcoming month.

Disadvantages of SAP HANA – it has traditional-
ly been a pure In-Memory database, which limited HANA
to databases that could be fully loaded into memory. This
meant that HANA could not support very large databases
where the size exceeded the amount of memory available.
This has been a source of a large number of complaints
from HANA customers over the need for a smooth transi-
tion within HANA to non-volatile storage. SAP partially
addressed this problem with the dynamic tiering option
and support for "extended tables" released in late 2014. Ex-
tended tables are disk-based structures that allow HANA
to access data on disk as well as in memory but current-
ly there is no concept of partitioning, and extended tables

are discrete objects from in-memory tables, which must be
managed by applications.

More recently, their Data Lifecycle Management
(DLM) tool can be used for moving data between memo-
ry, disk and Hadoop/SybaseIQ based on specified rules and
policies. This solved the large database problem, but intro-
duced other issues. Besides the issue that extended tables
will be very slow to access, use of extended tables is also
not transparent to the application. The logic to manage data
tiering and access for extended tables may need to be added
to every application that accesses data in a large database.

HANA does have support for row based tables, but
the performance emphasis is on columnar based tables and
this is the format that all of HANA's performance features
operate on. This is a significant issue in HANA, as a table
is either row based or it is column based; it cannot be both
simultaneously.

So although row based tables are supported, HANA
is primarily a columnar database and SAP emphasizes that
most tables should be columnar based. This implies that a
single data format is suitable for both OLTP and analytics.

Organizations can deploy HANA on premise after pur-
chasing an SAP-certified hardware appliance, or on a public
cloud from SAP, Amazon, Microsoft, IBM, and several oth-
er cloud providers. The processors used are Intel Xeon. The
OS is Linux. So it is not possible to claim that SAP Hana is
a multiplatform DB.

5. Oracle Database In-Memory

Oracle database In-Memory is available in Oracle data-
base 12c Enterprise Edition as additionally paid option. This
means that the database can be used without the In-Memory
feature. The Oracle database 12c has variants for almost all
industrial used operating systems and processor types and
do not need special certified appliance to be run. The only
exception is the option to use the so called SQL in Silicon:
the SPARC M7 microprocessor, specifically engineered for
optimal performance for the database In-Memory.

Dual-format architecture – Oracle database
In-Memory optimizes analytics and mixed workload OLTP,
delivering outstanding performance for transactions while
simultaneously supporting real-time analytics, business in-
telligence, and reports.

This breakthrough capability is enabled by the dual-for-
mat architecture of Oracle database In-Memory. Up to now,
databases have forced users to store data in either column or
row format. Column format is highly efficient for analytics,
but imposes very large overheads when used in OLTP envi-
ronments. Similarly, row format enables extremely fast OLTP,
but is less optimized for analytics. The only way to optimize
for both OLTP and analytics has been to copy data from OLTP
systems to analytic systems using complex ETL processes
that add a great deal of expense and latency.

The dual-format architecture of Oracle database
In-Memory eliminates this tradeoff by representing tables
simultaneously using traditional row format and a new
in-memory column format.

2 201830 information technologies
and control

The Oracle SQL Optimizer automatically routes ana-
lytic queries to the column format and OLTP queries to the
row format, transparently delivering best-of both-worlds
performance. Oracle database 12c Release 2 (12.2) automat-
ically maintains full transactional consistency between the
row and the column formats, just as it maintains consistency
between tables and indexes.

The new column format is a pure in-memory format.
Tables are stored on disk using Oracle’s existing row-based
or hybrid columnar formats. Since there is no persistent co-
lumnar storage format, there are no additional storage costs
or storage synchronization issues. Changes to the purely
in-memory column format are very fast because they don’t
need expensive persistent logging.

Having both a column and a row-based in-memory
representation does not double memory requirements. Ora-
cle uses its highly optimized buffer cache management algo-
rithms to keep only actively accessed row data in memory.
Decades of experience has shown that caching a small per-
centage of data blocks in memory eliminates the vast major-
ity of storage I/Os, and flash caching eliminates virtually all
the rest. Therefore most of the memory capacity in a data-
base server can be allocated to the column format.

Oracle’s in-memory column format uses sophisticated
compression to expand memory capacity and improve que-
ry performance. Compression ratios vary from 2X – 20X,
depending on the option chosen and redundancy in the data.
The compression method may be different across columns,
partitions or tables. For example, some table partitions can
be optimized for scan speed, others for memory footprint,
while others may be optimized to efficiently handle frequent
DML operations.

Comprehensive In-Memory optimizations – Oracle
implements state-of-the-art algorithms for in-memory scans,
in-memory joins, and in-memory aggregation. Tables are log-
ically split into sections, and minimum and maximum values
of every column are maintained for every section of a table.
This allows queries to quickly skip table sections that only
contain data outside of the range of data needed by the query.
Modern microprocessors support SIMD (Single Instruction
for Multiple Data values) vector processing instructions to
accelerate graphics and scientific computing. Oracle can use
these SIMD vector instructions to process multiple column
values in a single CPU clock cycle. In-Memory table joins
take advantage of the new columnar compressed format by
converting join conditions into filters applied during very fast
data scans or by executing the join on the compressed values
within the join columns. Analytic workloads typically spend
a considerable amount of time on expression evaluation for

each row returned by a query. In-Memory expressions en-
able frequently evaluated expressions to be materialized into
the In-Memory column store. Once in the column store, all
in-memory optimizations seamlessly apply to the expres-
sions: vector processing, storage index pruning, etc. The ex-
pression columns are also maintained automatically as the un-
derlying table columns are updated. In-Memory aggregation
algorithms leverage the column format to speed up analytic
queries and reports that aggregate large amounts of data.

Cost effective in-Memory processing for any data-
base size – Oracle database In-Memory does not require all
database data to fit in memory. Users can choose to keep
only performance sensitive tables or partitions in memory.
Less performance sensitive data can reside on much lower
cost flash or disk. Queries execute transparently on data re-
siding on all three tiers – memory, flash and disk – enabling
Oracle database In-Memory to be used with databases of
any size.

6. Practical Experience

Oracle Since the last months of 2017 we take part in
migration for the data warehouses of Health Insurance com-
panies from OLTP oriented Oracle instances to Hana DB
running with SAP applications. The migration tool is pro-
vided by SAP and works fine and reliable. The response time
of the applications on Hana DB reduces and the customers
are satisfied. The operations run smoothly and without big
problems. We faced two disadvantages of Hana DB. The
first one is the high price of Hana and there are a lot of com-
plains about this in the net. The second is the shortage of
experienced DBA staff to operate Hana. In the same time
there are articles confirming that at least one big company
do migrations from Hana to Oracle In-memory.

Conclusion

In the second decade of this century the database got
significant improvements in their functionality. Even more
– there are new trends in the balance of the usage of RAM
and hard disk memories. The attempt to place massive parts
of the databases in the RAM mature and is now almost stan-
dard feature of the databases implemented in thousands of
shops. These leads to new approaches in the design of the
applications and rise new challenges for hardware, operating
systems and database administrators. The architectural and
functional changes are significant and need knowledge to
operate them successful.

2 2018 31information technologies
and control

References
1. An Oracle White Paper, Analysis of SAP HANA High Availabil-
ity Capabilities, 2014.
2. Mitschang, B. et al. (Hrsg.). Datenbanksysteme für Business,
Technologie und Web (BTW 2017). Lecture Notes in Informatics
(LNI), Gesellschaft für Informatik, Bonn, 2017, 545 SAP HANA
– The Evolution of an In-Memory DBMS from Pure OLAP Pro-
cessing towards Mixed Workloads, 2017.
3. Kyte, T. On Oracle Database In-Memory. – Oracle Magazine,
January/February 2015.
4. All databases are in-memory now…aren’t they, 2014.
5. Oracle Database In-Memory. Powering the Real-Time Enter-
prise, 2014.
6. SAP HANA Administration Guide, 2016.
7. Pilev, D. Digital Signing of Data in the Web-based Information
Systems. – Information Technologies and Control, 14, 2016, No. 1.

Manuscript received on 05.02.2018

Prof. Krassimira Shvertner (PhD) works in
Sofia University. Her research is focused on
databases, database-as-a-service, database
security, database in-memory, engineered
database appliances. She has published
more than 100 papers.

Contacts:
Faculty of Economics and Business

Administration
Sofia University

125 Tsarigradsko chaussee, bl. 3,
1113 Sofia

e-mail: shvertner@feb.uni-sofia.bg

