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Abstract. The work off ers fractional repetitive control system of 
pneumatic positioning device. To prove the eff ectiveness of the pro-
posed system they are made time, frequency and robust analysis. 
After which were made experimental studies of observed fi ltering 
capabilities on a real laboratory installation of pneumatic position-
ing device, which is attached discreet fractional re-petitive control. 

Introduction

Essentially, fractional control systems are dynamic 
systems in full order. They approximate the properties of 
hypothetical irrational fractal dynamic systems with rational 
functions in a limited frequency range. For the approxima-
tion range coinciding with the operating range of the con-
certs object control systems, they possess the properties and 
characteristics of fractal dynamic systems that bring them 
into the class of the robust control systems.

Signifi cant parts of the industrial objects are character-
ized by the productivity-induced and/or load-induced chang-
es in the real conditions: repackaging/restructuring of the 
model; signifi cant inertia and varying delays; the existence 
of periodic external disturbances whose nominal parameters 
are known in advance by value but fl uctuate operational.

Control systems for objects with similar characteris-
tics should have robust, fi ltering and invariant properties and 
variations of delay values, and variations in the parameters 
of periodic external interference. 

In such cases, possible eff ective control strategy (to-
gether with its corresponding principles and systems) with 
which to realize the control of performance desired objects 
with characteristics described a strategy repetitive and pre-
dictive-repetitive control.

Sampling of the control algorithms is imposed by the 
fact that they are programmed into controllers, and analog 
circuits are not used for the realization.

The purpose of the development is:
● Realizing discrete fractional repetitive control on a 

physical laboratory pneumatic positioning device and the 
tasks in its implementation are:

● Synthesis of fractional repetitive control.
● Time analysis and evaluation of some indicators of 

performance.
● Robust analysis.
● Discreet realization of fractional control.
● Programming fractional control in PLC.
● Experimental results.

System Control Synthesis

The development is considered as a generalized automa-
tion object – a pneumatic positioning device, which is shown 
in fi gure 1. The generalized automation object is comprised of 
compressor K, proportional distributor valve V1, pneumatic 
actuator A1, potentiometer P, controller (PLC). 

For generalized automation object, the transfer func-
tions of the nominal (1) and perturbed en uppermost limit (2) 
models are known in advance. 

They are known in the literature [11,15] various struc-
tures of the repetitive control systems. The work is selected 
modifi ed structure of repetitive fi lter. It is suitable for this 
application study in the control of a proportional feedback 
pneumatic laboratory stand because it provides an extension 
of the cut-off  frequency band.

The synthesis of repetitive controller in the control 
system takes place in two stages:

● Designing a base regulator R(p).
● Designing a robust repetitive fi lter ML, which are 

independent of each other and also independent of the meth-
ods of synthesis used.

In the literature [1-4], the systems of non-integer or-
der are known. The structure of the fractional control sys-
tem is shown in fi gure 3. Used are the following indications: 
ML◦RINE

 – fractional repetitive regulator in the system; regu-
lator of non-integer order RINE

 (3), rationally approximating 
the behavior of an operator to integrate I α of the generalized 
fractional calculus from order 0.9 analytical synthesized by 
the method of recursive polynomial approximation [1,2,15] 
where α is non-integer order of the operator, and Г is the 
gamma function. 

In both the proposed two-step synthesis procedure, 
the solution is expressed in analytical design of the system 
fi gure 2 for fractional control with regulator RINE

 (3) and 
fractional repetitive control system fi gure 3 with a regulator   
ML◦RINE

 (6).

Figure 1

      ● They (fig.5) are stable in nominal parameter mode
*GˆG   (1). 
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Robust Analysis Подзаглавие І степен 
       Visualized results of frequency 2D Nyquist-robust analy-
sis of the performance for the characteristics of the open loop 
systems RS  (10) and RP  (11) in the characteristics of the 
open loop, systems also can be determined:  
      ● The margin of robust stability  SOLMk  under (12), 
figure 7.  
      ● The margin of robust performance  POLMk  under 
(13), figure 8. On the characteristics of closed loop systems, 
RS  (8) and RP  (9), (figure 7), systems using sensitivity 
functions (10) and complementary sensitivity (11). It is obvi-
ous that the design systems have proven robust stability iRS   
and proven  
 
 

 
 
 
 
robust performance iRP  in the context of the parametric fluc-

tuation of G  (2) to *G  (1), set forth in the synthesis of 
systems. The results of the robust analysis on the characteris-
tics of the open loop systems (figure 6) and the closed ones 
(figure 7). Analytically prove and uniquely visualized that in 
the condition of repartition/restructuring ,   the nominal 
model of the object (1) the system without a repetitive filter 
ML (figure 2) and the repetitive fractal system (figure 3) 
have robust stability SR  and robust performance PR , as 
their characteristics meet the requirements formulated by (8- 
11). The margins of robust stability and robust performance 
that meet the requirements described in (12 and 13) have also 
been visualized. 
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Time Analysis and Evaluation  
of Some Indicators Performance

The synthesized control systems figure 2 and figure 3 
are modeled and simulated in MATLAB environment. The 
simulation results of the models – the time and frequency 
characteristics of the closed Фi and open Wi loop systems 
for control of object G are visualized in nominal G≡̂G* (1) 
parametric mode without the presence of a permanently oc-
curring periodic external signal disturbance d, as follows:

• The transfer function of figure 4, which shows that in 
the reaction of the control system without the filter and the 

reaction of the system with fractal regulator and repetitive 
filter it still has an aperiodic character (4). 

• Frequency characteristics of the open loop systems 
figure 5, from which it is clear that the fractional repetitive    
WML◦INE

 control system has a larger gain margin and phase 
margin (7) than the fractal system WINE

. 
The analysis of the performance of the systems (figure 

2, figure 3) confirms that both systems:
● Satisfy the generalized performance criteria (figure 

4, figure 5). 
● They (figure 5) are stable in nominal parameter 

mode   G≡̂G* (1) (1).
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Time Analysis and Evaluation  
of Some Indicators Performance 
Подзаглавие І степен 
      The synthesized control systems figure 2 and figure 3 are 
modeled and simulated in MATLAB environment. The simu-
lation results of the models – the time and frequency charac-
teristics of the closed i and open iW  loop systems for con-

trol of object G are visualized in nominal *GˆG   (1) para-
metric mode without the presence of a permanently occurring 
periodic external signal disturbance d , as follows: 
       The transfer function of fig.4, which shows that in the 
reaction of the control system without the filter and the reac-
tion  

 
 
 
 
 
of the system with fractal regulator and repetitive filter it still 
has an aperiodic character (4).  
       Frequency characteristics of the open loop systems fig-
ure 5, from which it is clear that the fractional repetitive  
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      The analysis of the performance of the systems (figure 2, 
figure 3) confirms that both systems: 
      ● Satisfy the generalized performance criteria (figure 4, 
figure 5).  
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      ● They (fig.5) are stable in nominal parameter mode
*GˆG   (1). 
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Robust Analysis Подзаглавие І степен 
       Visualized results of frequency 2D Nyquist-robust analy-
sis of the performance for the characteristics of the open loop 
systems RS  (10) and RP  (11) in the characteristics of the 
open loop, systems also can be determined:  
      ● The margin of robust stability  SOLMk  under (12), 
figure 7.  
      ● The margin of robust performance  POLMk  under 
(13), figure 8. On the characteristics of closed loop systems, 
RS  (8) and RP  (9), (figure 7), systems using sensitivity 
functions (10) and complementary sensitivity (11). It is obvi-
ous that the design systems have proven robust stability iRS   
and proven  
 
 

 
 
 
 
robust performance iRP  in the context of the parametric fluc-

tuation of G  (2) to *G  (1), set forth in the synthesis of 
systems. The results of the robust analysis on the characteris-
tics of the open loop systems (figure 6) and the closed ones 
(figure 7). Analytically prove and uniquely visualized that in 
the condition of repartition/restructuring ,   the nominal 
model of the object (1) the system without a repetitive filter 
ML (figure 2) and the repetitive fractal system (figure 3) 
have robust stability SR  and robust performance PR , as 
their characteristics meet the requirements formulated by (8- 
11). The margins of robust stability and robust performance 
that meet the requirements described in (12 and 13) have also 
been visualized. 
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Robust Analysis   

Visualized results of frequency 2D Nyquistrobust 
analysis of the performance for the characteristics of the 
open loop systems RS (10) and RP (11) in the characteristics 
of the open loop, systems also can be determined: 

● The margin of robust stability kMSOL(ω) under (12), 
figure 8. 

● The margin of robust performance kMPOL(ω) under 
(13), figure 9. On the characteristics of closed loop systems,   
RS (8) and RP (9), (figure 7), systems using sensitivity func-
tions (10) and complementary sensitivity (11). It is obvious 
that the design systems have proven robust stability RSi and 

proven robust performance RPi in the context of the para-
metric fluctuation of G▪ (2) to G* (1), set forth in the syn-
thesis of systems. The results of the robust analysis on the 
characteristics of the open loop systems (figure 6) and the 
closed ones (figure 7). Analytically prove and uniquely visu-
alized that in the condition of repartition/restructuring ξ, ξ ▪ 

the nominal model of the object (1) the system without a re-
petitive filter ML (figure 2) and the repetitive fractal system 
(figure 3) have robust stability RS and robust performance 
RP, as their characteristics meet the requirements formu-
lated by (8-11). The margins of robust stability and robust 
performance that meet the requirements described in (12 and 
13) have also been visualized.

 

      ● They (fig.5) are stable in nominal parameter mode
*GˆG   (1). 
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       Visualized results of frequency 2D Nyquist-robust analy-
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      ● The margin of robust stability  SOLMk  under (12), 
figure 7.  
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robust performance iRP  in the context of the parametric fluc-

tuation of G  (2) to *G  (1), set forth in the synthesis of 
systems. The results of the robust analysis on the characteris-
tics of the open loop systems (figure 6) and the closed ones 
(figure 7). Analytically prove and uniquely visualized that in 
the condition of repartition/restructuring ,   the nominal 
model of the object (1) the system without a repetitive filter 
ML (figure 2) and the repetitive fractal system (figure 3) 
have robust stability SR  and robust performance PR , as 
their characteristics meet the requirements formulated by (8- 
11). The margins of robust stability and robust performance 
that meet the requirements described in (12 and 13) have also 
been visualized. 
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      In [3,4,5,6,7,8,9] various methods are known to sampling 
the rational approximations of the operators of the 
generalized fractional calculus. For the programming of the 
synthesized fractional repetitive regulator in the PLC, 
sampling using the Tustin method with sampling rate is used 

s001,0Т 0  . For the purposes of sampling, the Tustin 
transformation uses the Muir-recursion (14.1). The operator's 
   1z1  approximation to the Padé series is described in 
(14.2). For comparison in (14.3), Taylor's extended series is 
shown. Sampling of the fractal repetitive algorithm consists 
of two stages: 
       Sampling of repetitive filter. 
       Sampling of non-integer regulator. 
      Repetitive filter (5) fig.10 is composed of aperiodic units 

 pW k  and units with a delay pTkpe  . Both are discrete as 
shown in (15.3) and (15.1), after which their descriptions are 
brought into differential equations (15.4) and (15.2) respec-
tively with a discrete time k  counter which are programmed 
in the PLC controller. The fractal regulator (3.2) is scaled to 
(16.1), fig. 11 and converted to differential equation (16.2), 
which in turn is programmed in the PLC controller. The vari-

ables 1e , 2e , 3e , used in figure 10 and the PLC controller 
program code shown are equivalent to the variables *ˆ1e 
, 

 2ˆ2e  , 
 3ˆ3e    used in (14.2). 

      The implementation of the control algorithm [12] was ac-
complished using a functional repetitive filter unit. This  
 
 
 

 
 
 
 
enables the function block, in which the repetitive filter is 
programmed, to be called after the fractal regulator block has 
been programmed (figure  9). The program code of the re-
petitive filter is as follows: 
 
#e1 := #e - #e2; 
#x := #e1 + #z; 
#y := 1.995004 * #y1 - 0.995013 * #y2 + #x - 2.004979 * 
#x1 + 1.004988 * #x2; 
#z := 0.367871 * #z1 + 0.632106 * #y1; 
#y2 := #y1; 
#y1 := #y; 
#x2 := #x1; 
#x1 := #x; 
#z1 := #z; 
#e2 := #z + #e1; 

#e3 := #e2; 
      For fractional repetitive control 

NEIRML   program code 
is as follows: 
 
"ML_DB"(e := #sp - #pv, 
        e3 => #e); 
#e1 := 0.017437 * #e; 
#e2 := 0.999998 * #y1_1 + #e1 - 0.9866 * #e1_1; 
#y1_1 := #e2; 
#e1_1 := #e1; 
#e3 := 0.9803 * #y2_1 + #e2 - 0.998 * #e2_1; 
#y2_1 := #e3; 
#e2_1:=#e2; 
#mv := 0.97569 * #y3_1 + #e3 - 0.983 * #e3_1; 
IF #mv > 1 THEN 
    #mv := 1; 
END_IF; 
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Discrete Realization of Algorithm  
for Fractal Control

In [3,4,5,6,7,8,9] various methods are known to sam-
pling the rational approximations of the operators of the 
generalized fractional calculus. For the programming of the 
synthesized fractional repetitive regulator in the PLC, sam-
pling using the Tustin method with sampling rate is used 
Т0=0,001s. For the purposes of sampling, the Tustin trans-
formation uses the Muir-recursion (14.1). The operator's  
(1-z-1 )±α approximation to the Padé series is described in 
(14.2). For comparison in (14.3), Taylor's extended series is 
shown. Sampling of the fractal repetitive algorithm consists 
of two stages:

• Sampling of repetitive filter.
• Sampling of non-integer regulator.
Repetitive filter (5) figure 11 is composed of aperiodic 

units Wk(p) and units with a delay e-pkTp. Both are discrete as 
shown in (15.3) and (15.1), after which their descriptions are 
brought into differential equations (15.4) and (15.2) respec-
tively with a discrete time k counter which are programmed 
in the PLC controller. The fractal regulator (3.2) is scaled 
to (16.1), figure 12 and converted to differential equation 
(16.2), which in turn is programmed in the PLC controller. 
The variables e1, e2, e3, used in figure 12 and the PLC con-
troller program code shown are equivalent to the variables 
e1≡̂ε*,   e2≡̂ε*

2, e3≡̂ε*
3    used in (14.2).

The implementation of the control algorithm [12] was 
accomplished using a functional repetitive filter unit. This 
enables the function block, in which the repetitive filter is 

programmed, to be called after the fractal regulator block 
has been programmed (figure 10). The program code of the 
repetitive filter is as follows:
#e1 := #e - #e2;
#x := #e1 + #z;
#y := 1.995004 * #y1 - 0.995013 * #y2 + #x - 2.004979 * 
#x1 + 1.004988 * #x2;
#z := 0.367871 * #z1 + 0.632106 * #y1;
#y2 := #y1;
#y1 := #y;
#x2 := #x1;
#x1 := #x;
#z1 := #z;
#e2 := #z + #e1;
#e3 := #e2;

For fractional repetitive control ML◦RINE
 program code 

is as follows:

"ML_DB"(e := #sp - #pv,
	 e3 => #e);
#e1 := 0.017437 * #e;
#e2 := 0.999998 * #y1_1 + #e1 - 0.9866 * #e1_1;
#y1_1 := #e2;
#e1_1 := #e1;
#e3 := 0.9803 * #y2_1 + #e2 - 0.998 * #e2_1;
#y2_1 := #e3;
#e2_1:=#e2;
#mv := 0.97569 * #y3_1 + #e3 - 0.983 * #e3_1;
IF #mv > 1 THEN
	 #mv := 1;
END_IF;
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      In [3,4,5,6,7,8,9] various methods are known to sampling 
the rational approximations of the operators of the 
generalized fractional calculus. For the programming of the 
synthesized fractional repetitive regulator in the PLC, 
sampling using the Tustin method with sampling rate is used 

s001,0Т 0  . For the purposes of sampling, the Tustin 
transformation uses the Muir-recursion (14.1). The operator's 
   1z1  approximation to the Padé series is described in 
(14.2). For comparison in (14.3), Taylor's extended series is 
shown. Sampling of the fractal repetitive algorithm consists 
of two stages: 
       Sampling of repetitive filter. 
       Sampling of non-integer regulator. 
      Repetitive filter (5) fig.10 is composed of aperiodic units 

 pW k  and units with a delay pTkpe  . Both are discrete as 
shown in (15.3) and (15.1), after which their descriptions are 
brought into differential equations (15.4) and (15.2) respec-
tively with a discrete time k  counter which are programmed 
in the PLC controller. The fractal regulator (3.2) is scaled to 
(16.1), fig. 11 and converted to differential equation (16.2), 
which in turn is programmed in the PLC controller. The vari-

ables 1e , 2e , 3e , used in figure 10 and the PLC controller 
program code shown are equivalent to the variables *ˆ1e 
, 

 2ˆ2e  , 
 3ˆ3e    used in (14.2). 

      The implementation of the control algorithm [12] was ac-
complished using a functional repetitive filter unit. This  
 
 
 

 
 
 
 
enables the function block, in which the repetitive filter is 
programmed, to be called after the fractal regulator block has 
been programmed (figure  9). The program code of the re-
petitive filter is as follows: 
 
#e1 := #e - #e2; 
#x := #e1 + #z; 
#y := 1.995004 * #y1 - 0.995013 * #y2 + #x - 2.004979 * 
#x1 + 1.004988 * #x2; 
#z := 0.367871 * #z1 + 0.632106 * #y1; 
#y2 := #y1; 
#y1 := #y; 
#x2 := #x1; 
#x1 := #x; 
#z1 := #z; 
#e2 := #z + #e1; 

#e3 := #e2; 
      For fractional repetitive control 

NEIRML   program code 
is as follows: 
 
"ML_DB"(e := #sp - #pv, 
        e3 => #e); 
#e1 := 0.017437 * #e; 
#e2 := 0.999998 * #y1_1 + #e1 - 0.9866 * #e1_1; 
#y1_1 := #e2; 
#e1_1 := #e1; 
#e3 := 0.9803 * #y2_1 + #e2 - 0.998 * #e2_1; 
#y2_1 := #e3; 
#e2_1:=#e2; 
#mv := 0.97569 * #y3_1 + #e3 - 0.983 * #e3_1; 
IF #mv > 1 THEN 
    #mv := 1; 
END_IF; 
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Experimental Results

The results of the actual experiments are as follows:
• Figure 13.1. – h*

INE
 for three different set point values.

• Figure 13.2. – h*
ML◦INE

 for three different set point val-
ues.

• Figure 13.3. – h*
INE

 and h*
ML◦INE

• Figure 14.1. – hINE
 for three different set point values.

• Figure 14.2. – h▪
ML◦INE

 for three different set point val-
ues;

• Figure 14.3. – h▪
INE

 and h▪
ML◦INE 

.

The following indications are used: μ – the position of 
the pneumatic positioning device; h*

INE
 – a step response of 

fractal system in nominal parametric mode; h*
ML◦INE

 – a step 
response of a fractal repetitive system in the current para-
metric mode; h▪

INE
 – a step response of fractal system in per-

turbed en uppermost limit parametric mode; h▪
ML◦INE

 – a step 
response of a fractional repetitive system in a perturbed en 
uppermost limit parametric mode.
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       The results of the actual experiments are as follows: 

 Figure 11.1. – *
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Experimental Results Подзаглавие І степен 
       The results of the actual experiments are as follows: 
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Figure 13.1 Figure 14.1

Figure 13.2 Figure 14.2

Figure 13.3 Figure 14.3

The results of the actual experiments under laborato-
ry conditions confirm the improved properties of the repet-
itive to the fractional control systems to counteract periodic 
disturbances caused by friction. Improved performance is 
expressed in increasing the period of repetitive disturbanc-

es and reducing the amplitude of periodic disturbances as 
shown in figure 13.3 and figure 14.3. From the same figures, 
it can be seen that the repetitive filter in combination with a 
fractal regulator leads to an improved system accuracy in an 
established mode.

Conclusion

The study was directed to the development of discrete 
frac-tal repetitive control of physical laboratory pneumatic 
positioning device.

The new and original in the development is that:
• A comparative time analysis was performed.
• Some performance indicators have been evaluated.
• Perform a robust analysis in open and closed systems.
• Margins of robust stability and robust performance 

have been evaluated.
• It is discretized and PLC programming algorithm for 

management of non-integer order.
• It is discretized and programmed the PLC repetitive 

filter.
• Software has been developed in the PLC controller.
• Experimental lab tests have been carried out confirm-

ing the advantages of the repetitive to the fractional control 
sys-tems to counteract periodic disturbances caused by fric-
tion.
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