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P-solutions for a Type of Structured 
Interval Parametric Systems

L. Kolev 

Abstract. It is known that many analysis problems arising in sci-
ence and engineering, which contain parametric uncertainties, can 
be modeled by a system of linear algebraic equations where the 
elements of the matrix and right-hand side vector depend linearly 
on a number of interval parameters. In certain cases, the linear 
interval parametric (LIP) system has a specific structure. Recent-
ly, an efficient iterative method for a type of such structured LIP 
systems has been suggested which yields the approximate solution 
in the form of an interval vector. In the present paper, it is shown 
that the latter method can be modified in an appropriate manner 
to produce new so-called p-solutions of the LIP system considered. 
The properties of the p-solutions are analyzed. It is shown that the 
p-solutions can be used to construct new methods for determining 
various enclosing solutions of structured systems.

1. Introduction

As is known, various problems encountered in science 
and engineering involve uncertain parameters that are given 
as intervals. A large class of such problems can be formu-
lated in (or reduced to) the form of a (real square) linear 
interval parameter (LIP) system of size n  

(1a) A(p)x=b(p), p ϵ p

whose elements aij(p) and bi (p) are affine linear functions 
             m          m
(1b) aij (p)=αij+∑ aijμpμ, bi(p)=βi+∑=1βiμpμ, p ϵ pi
       (μ=1)     (μ=1)

where p=(p1,..,pm) is a real m-dimensional vector be-
longing to a given interval vector p=(p1,..,pm) . Let

Sx={x:A(p)x=b(p), p ϵ p}

denote the solution set of (1). As is well known, the follow-
ing “solutions” to (1) are considered: (i) outer solution x: an 
interval vector containing Sx, (ii) hull solution x*: the nar-
rowest x enclosing Sx, and (iii) inner estimation of the hull 
(IEH) solution xin : an interval vector such that xin⊆x*.

Various methods for determining the above solutions 
are known [1-9]. 

Sometimes the problem to be solved is composed of 
the LIP system (1) and an additional relationship (e.g., [9])

(2) z=f(x, p) 

where z is a n1-dimensional vector of “secondary” variables; 
the function f can be, in general, nonlinear in x and p. Now 
let

Sz={z: z=f(x,p), A(p)x=b(p), p ϵ p} 

be the solution set of the pair (1), (2). On the basis of Sz, all 
three types of solutions z, z* and zin can be defined. In this 
more general setting, the solutions related to Sx are called 
primary interval solutions whereas those related to Sz are re-

ferred to as secondary interval solutions. 
It is important to underline that all interval solutions 

are interval vectors assessing from outward or inward the 
respective solution sets Sx or Sz.

Meanwhile it was observed that in some cases the LIP 
system considered has a specific structure. Thus, in mechan-
ical engineering if finite element method (FEM) is used for 
analysis of truss structures, system (1a) has the form [10]

(3) (K+BD(p)A)x=a+Fq, p ϵ p, q ϵ q

where the interval parameters p appear only in the diagonal 
matrix D while the additional independent parameters q are 
solely in the right-hand side. A substantial generalization 
has been considered in [11] where the standard system (1a) 
is written (by renaiming the parameters that appear in the 
right-hand side of the system) as

(4a) A(p)x=b(p, q), p ϵ p, q ϵ q,

           m1            m1            m
(4b) A(p)=A0+∑ Aμpμ, b(p,q)=b0+∑=bμpμ +∑ bμpμ.
     (μ=1)       (μ=1) (μ=m1+1)

An efficient iterative method for finding an outer inter-
val solution to (4) has been proposed in [11] which yields an 
interval vector x enclosing the solution set Sx of (4). 

Recently, a new type of solution to (1), so called pa-
rameterized or p-solution, has been introduced in [12]. It is 
defined as a corresponding linear interval form

(5) x(p)=Lp+a, p ϵ p

where L is a real n×m matrix while a is an n-dimensional 
interval vector. It should be stressed that the parameter vec-
tor p in (5) is a symmetric vector of unit radius, i.e., pj=[-
1,1]  for j=1,...,m.. Iterative methods for determining x(p)  
were suggested in [12-14]; a direct method for determining a 
p-solution was proposed in [15]. (For the advantages of x(p)   
over the standard (non-parametric) solutions x, the reader is 
referred to [12] – [16]).

Remark 1. For simplicity the same notation p is used 
in formulae (1) and (5) for different intervals (centered or 
not). Relevant changes in the notations will be made later 
in Section 2.2.

In the present paper, we show that the method of 
[11] can be modified to produce a p-solution of (4). That is 
achieved by replacing, at each iteration, the involved interval 
arithmetic (IA) operations with corresponding affine arithme-
tic (AA) operations (e.g., [17]) (Section 2). Next (in Section 
3), the properties of the p-solutions are presented. It is shown 
that the p-solutions can be used to construct new methods for 
determining narrower primary x or secondary z solutions. A 
numerical example illustrating the superiority of the new ap-
proach over other known methods is given in Section 4.
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1. Determining the p-solutions

2.1. The iterative method of [11]

It is based on Theorems 3 and 4 of [11]. The former 
theorem shows under what conditions and how a LIP system 
of the general form (1a) can be transformed into an equiv-
alent form

(6) (A0+LD(p)R)x=b0+LD(p)t+Fq

where L, R and F are matrices of sizes n×k1, k1×n and 
n×(K-k1) respectively, whereas t is a vector of size K. Ex-
plicit formulae for computing L, R, F and t are given in [11].

The interval method proper of [11] employs interval 
arithmetic (therefore referred to as method MI) and is based 
on Theorem 4 in [4]. Let p ϵ p, q ϵ q and D0 be the centre 
of D(p). Assume that C=(A0+LD0 R)-1 exists. Also let w be 
a unit vector (all elements are equal to one). Now, compute

(7a) w'=w-|D0-D||RCL|w,

(7b) w"=|D0-D||RCb0+RCFq+RCLD0 t-t|.

If w'>0, then methods MI is applicable and has the fol-
lowing computational scheme:

Step 1. Using (7), compute the initial value of the in-
terval vector

(8) d=[-αw, αw], α=max(wi
"/wi

').

Step 2. Iterate 

(9a) y={RCb0+(RCF)q+(RCL)(D0 t+d)}∩y,

(9b) d={(D0-D)(y-t)}∩d.

until some stopping criterion is satisfied.
Step 3. Compute the interval vector

(10) x=Cb0+(CF)q+(CL)(D0t+d)

which (as shown in [11]) encloses the solution set Sx of (4).
The stopping criterion used in method MI is the same 

as that of [10]: the iterations are terminated either as soon 
as the sum of the components of d for two consecutive iter-
ations does not improve by a factor of 0.999 or after at most 
10 iterations.

The method MI, whenever applicable, seems to be the 
best known method for computing an interval outer solution 
of (1) for the following reasons:

– it does not require strong regularity of A(p) on p; 
– the method is capable of solving problems for large 

parameter intervals;
– it is more general and more efficient than the method 

of [10].

2.2. The Method for Computing a p-solution

We suggest a method for enclosing the solution set Sx  
of (1) (or Sz of (1), (2)) when system (1a) can be represent-
ed in the form (6). The method (referred to as method MA) 
reduces, essentially, to replacing the interval arithmetic (IA) 

operations in method MI by affine arithmetic (AA) opera-
tions.

In accordance with Remark 1 we first denote the inter-
val parameter vectors in (4) as p' and q'. Next, we define the 
corresponding affine forms ⟨p'⟩ and ⟨q'⟩. We also introduce 
the centered affine forms 

⟨p⟩:=-(⟨p'⟩-p̆), ⟨q⟩:=⟨q'⟩-q̆.

Accounting for the specificity of AA, we introduce 
the following modifications in the computational scheme of 
methods MI:

M1. Remove the intersections in (9).
M2. Replace the IA operations in (9a) by their AA 

counterparts to obtain ⟨y'⟩. More specifically, the auxiliary 
affine form ⟨qa

'⟩=(RCF)⟨q'⟩ is first introduced. Next, the cen-
tre is found to obtain. 

⟨y⟩=y̆+⟨qa⟩+(RCL)⟨d⟩

M3. Replace the multiplication of the diagonal matrix 
(D0-D) and the vector (y-t) by the Hadamard product of ⟨p⟩ 
and (⟨y⟩+t'), t'=y̆-t (the Hadamard product a.*b of two vec-
tors a and b yields a vector c with components ci=ai*bi).

Thus, the algorithm of method MA is as follows:
Step 1. Introduce the interval vectors p, q and the cor-

responding affine forms. 
Step 2. Introduce d and the corresponding affine form  

⟨d⟩.
Step 3. Iterate

(11a) ⟨y⟩=y̆+⟨qa⟩+(RCL)⟨d⟩

(11b) ⟨d⟩=⟨p⟩.*(⟨y⟩+t')

until a convergence criterion for ⟨d⟩ is activated. 
Step 4. Compute the affine vector 

(12) ⟨x⟩=Cb0+(CF)⟨q'⟩+(CL)(D0t+⟨d⟩).

Each component of ⟨x⟩ is of the form
    m1                  m               mt
(13) ⟨xi⟩=x̆i+∑eijξj+∑eijξj+∑e_ij ξj
   j=1       j=m1+1    j=m+1

where ξj=[-1,1], x̆i is the centre of ⟨xi⟩ while eij are the so-
called error terms and mt denotes the total number of the 
error terms [17]. 

If we solve a primary problem, ⟨x⟩ is written in LIP 
form as

(14) x(p,q)=x̆+Lp p+Lq q+[-x̂,x̂], p∈p, q∈q

where the n×m1 and n×(m-m1) matrices Lp and Lq are associ-
ated (row-wise) with the first two sums in (13), p and q are 
symmetric intervals of unit radius and x̂ is computed com-
ponent-wise as the radius of the last sum in (13). The form 
(14) is the sought p-solution of (4).

If the problem considered is of the secondary type (1), 
(2)

(15) z=f(x,p,q),

then we proceed as follows. We use (13) and AA in (15) to 
compute the affine vector ⟨z⟩ with components
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   m1               m               mt
(16) ⟨zi⟩=z̆i+∑eij

'ξj+∑eij
'ξj+∑eij

'ξj.
  (j=1)         j=k1+1)    (j=K+1)

Next ⟨z⟩ is written in the associated LIP form

(17) z(p,q)=z̆+Lpp+Lqq+[-ẑ,ẑ], p∈p, q∈q

(the elements of Lp and Lq are now related to the correspond-
ing terms in (16)). Obviously, (17) determines the p-solution 
related to the secondary problem (4), (15).

2. Properties of the p-solutions

3.1. Primary Variables 

Let u denote the augmented parameter vector (p,q)  of 
size m. The properties of (14) follow from Lemmas 1, 2 and 
Theorem 1 in [12]. First, the range x(u) of x(u) over u pro-
vides an outer solution x of (4), i.e. x=x(u). Hence the ith 
component xi

* of the IH solution x* to (1) is contained in the 
ith component of the range, i.e. 

(18) xi
*⊂xi(u).

The inclusions (18) can be improved bounding the 
ends of the hull solution. Following [12] we define

(19a) ei
(l)=[el

k, ē
l
k], e

l
k=xk, ē

l
k=x̆k-∑j

|lkj|; or ēl
k=xk+x̂k;

in a similar way

(19b) ei
(u)=[eu

k, ē
u
k], e

u

k=x̆k+∑j|lkj| or ēl
k=x̄k-x̂k, ēk

u=x̄k.

Theorem 1. [12]. Let ei 
(l) and ei 

(u) be the intervals de-
fined by (19; also let xi

* and x̄i
* be the endpoints of xi

*. Then

(20) xi
*∈ei

(l), x̄i
*∈ei

(u).

Here we suggest better enclosures ei 
(l) and ei 

(u) than 
those in (19). Beforehand some preliminary facts are need-
ed. Geometrically, the interval vector u'  is a box in Rm. A 
vertex u(v) is a particular combination of the ends of the in-
tervals u'

j, j=l,...,m. Recall [9] that determining a component    
xk

*=[xk
*,x̄k

*] of x* is carried out by solving the following pair 
of global optimization problems:

(21a) xk
*=min ek

Tx,

(21b) x̄k
*=max ek

Tx,

subject to the constraint (4) (ek is the kth column of the iden-
tity matrix). According to Corollary 3 in [11], xk

* and x̄k
* are 

attained at corresponding vertices (u')l and (u')u. As in [9] 
such problems will be said to have the vertex property. Let 
         m

(22) xk(u)=x̆k+∑ lkjuj+[-x̂k,x̂k], uj∈[-1,1]
        j=1

be the kth component of the p-solution of (4). At this point 
we make the following assumption.

Assumption 1. It is assumed that all lkj≠0.
We now introduce two sign vectors sk

l and sk
u whose 

components are

(23a) sl
kj=-sign(lkj), s

u
kj=sign(lkj),

as well as two vertices (u')l and (u')u with components 

(23b) (uj
')l=ŭj+sl

kjlûj, (uj
')u=ŭj+skj

u ûj. 

Next, the IEH (inner) assessments xk
in and x̄k

in are 
found as the solution of the respective systems

(23c) A((p')l)x=b((u')l), A((p')u)x=b((u')u),

where (p')l and (p')u are the respective partition parts of  
(u')l and (u')u. On account of (23), tight bounds ek

l=[ek
l,ēk

l] and 
ek

u=[ek
u,ēk

u] on xk
* and x̄k

*, respectively, can be computed with

(23d) ek
l=xk,ēk

l=xk
in, ēk

l=x̄k
in, ēk

u=x̄k.

Theorem 2. Under Assumption 1, let ei
(l) and ei

(u) be the 
intervals defined by (23). Then

(24) xk
*∈ek

(l), x̄k
*∈ek

(u).

The above intervals are narrower than the intervals 
(19), (20).

We now show that tight bounds of the type (23) can be 
determined even if Assumption 1 is not satisfied. Indeed, let 
I1 denote the set of those indices for which lkj≠0 while I2 is 
the set of the remaining indices with lkj=0 . Also, introduce 
two real vectors u and ū whose components are guaranteed 
to take on end-point values according to (23b) for those in-
dices with j∈I1. Thus, each vector u' can be partitioned into 
two parts as follows:

(25a) u'=(u(1), (u')(2))

or 

(25b) u'=(ū(1), (u')(2))

where only the components (u')j
(2) of (u')(2), j ∈ I2 are allowed 

to vary within the corresponding intervals (uj
')(2). Let I1 and I2 

have m1 and m2 members, respectively. It is seen that in view 
of (25) the original interval vector u' has been reduced to a 
new m2 – dimensional interval vector (u')(2) .

We first consider partition (25a) and present a proce-
dure for determining x k

in.
Procedure 1. Set up the modified system

(26a) A(p(1), (p')(2))x=b(u(1), (u')(2))

and find its p-solution with components

(26b) xk
l (u(2))=x̆k

l+∑j∈I2lkj
luj+[-x̂k

l, x̂k
l].

If all lkj
l≠0, the corresponding components (uj

(2))l form-
ing the solution u(2) are determined using (23b) for j∈I2. 
Thus, we have found the m-dimensional vector u'=(u(1), u(2)). 
Finally, xk

in is determined as the solution of

(26c) A(p')x=b(u').

If in (26b) some lkj
l=0, then (u')(2) is treated as a new pa-

rameter vector u' of size m2. Now u' is partitioned again into 
two parts according to (25a) and a new attempt to eventually 
obtain the final xk

in is made.
Procedure 2 (for determining x̄k

*). It has, essentially, 
the same structure as Procedure 1. We now set up the mod-
ified system

(27a) A(p̄(1), (p')(2))x=b(ū(1), (u')(2))
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and find its p-solution with components
                     m2

(27b) xk
u(u(2))=x̆k

u+∑jlkj
uuj+[-x̂k

u, x̂k
u].

                    j=1

If all lkj
u ≠0, then the correct values ū(2) are fixed using 

(23a), (23b). The final parameter vector ū'=(ū(1), ū(2)) yielding 
x̄k

in is found as the solution of 

(27c) A(p̄')x=b(ū').

If in (27b) some lkj
u=0, then (u')(2) is again split into two 

parts and a new attempt to attain the final x̄k
in is made.

3.2. Secondary Variables

We only consider the problem of bounding the ends of 
the hull solution zk

* for the secondary variable

(28a) zk=fk(x,u), u∈u.

In the case of a secondary problem, the vertex prop-
erty of zk

* and z̄k
* cannot be guaranteed. Nevertheless, tight 

bounds ek
l =[ek

l,ēk
l] and ek

u=[ek
u, ēk

u] on zk
* and z̄k

*, respec-
tively, can be computed. Thus, using the kth component of 
the p-solution 

         m
(28) zk(u)=z̆k+∑lkjuj+[-ẑk, ẑk], u∈u,
       j=1 

and the interval vector zk=[zk,z̄k] to which (28) reduces, we 
define

(29a) ek
l=zk, ēk

l=x̆k-∑|lkj|;
                      j

in a similar way

(29b) ek
u=x̆k+∑|lkj|, ēk

u=z̄k.
       j

Better results for ēk
l and ek

u can be obtained if the signs 
skj

l and skj
u related to lkj in (28) are used. In this case, using 

the vertex (u')l with components (uj
')l=ŭj+skj

l ûj, we first com-
pute xk

l as the solution of A((p')l)x=b((u')l). Then we find

(30a) ēk
l=f(xk

l, (u')l).

The bound ek
u is obtained in a similar way (using the 

vertex (u')u and the solution xk
u of A((p')u)x=b((u')u )) as

(30b) ek
u=f(xk

u, (u')u).

Remark 2. It should be underlined that the bounds 
(26) and (30) are narrower than those given in [12] and can 
be used for unstructured systems as well. 

Remark 3. It should be stressed that the bounds (23d) 
and (29) are used for determining the hull solutions x* or zk

* 
in conjunction with constraint propagation techniques [12] 
– [15]. Thus, reducing the bounds width will enhance the 
efficiency of the methods for computing the respective hull 
solutions.

3. Example

We consider a class Creq of linear interval parameter 
DC circuits made up of resistors rμ and (ideal) voltage sourc-

es eμ, μ=1,..,m1 as well as current qμ sources, μ=m1+1,...,m 
where rμ and qμ belong to respective intervals rμ

' and qμ
' while 

the voltage sources eμ are known exactly (are constans). We 
address the problem of tolerance analysis of such circuits us-
ing nodal analysis (NA) or modified nodal analysis (MNA) 
equations. On introduction of interval conductances pμ

'=1/rμ
', 

the corresponding LIP system is of the form

(31a) G(p)x=I(p)+q, p∈p', q∈q'.

where the elements Gii(p) and Gij(p)=Gji(p) of G(p) are the 
proper and mutual conductance while Ii(p) is the correspond-
ing equivalent current source; x is the vector of the node 
voltages. System (31a) can be written in the equivalent form 

   m                    m1                   m
(31b) G(p)=∑A(μ)pμ, I(p,q)=∑b(μ)pμ+∑b(μ)qμ.
  μ=1                  μ=1                μ=m1+1 

It can be seen that now, in view of (31a), each A(μ) is 
a dyad

(31c) A(μ)=ξμξμ
T

where ξμ is an n-dimensional vector. If pμ is across two 
nodes k and l, then ξμ is a zero (column) vector except for 
the entries ξμk=-1 and ξμl=1; if l is the datum node the only 
nonzero entry is ξμk=1. Thus, A(μ) is a rank-one matrix. 
Also, it can be shown that b(μ) have at most two non-ze-
ro entries. It is seen that the LIP system considered has 
a highly specific structure. It turns out that the following 
result is valid.

Theorem 3. Let the linear interval parameter DC cir-
cuits considered are of class Creq. Then the describing system 
(31) can be transformed into system (4) where L is given by 
the incidence matrix of the circuit, R=LT and the components 
tμ of t are equal to eμ or -eμ depending on whether the direc-
tions of source and current in the μth branch are the same 
or not.

The validity of Theorem 3 follows directly from The-
orem 3 in [11].

We take up the DC circuit considered in [18], [11] to 
illustrate the new results obtained in §§ 2.2 and 3. The algo-
rithms of the methods used were programmed in MATLAB 
environment using the toolbox IntLab.8 [18] to carry out the 
interval calculations involved. The AA arithmetic was im-
plemented by the affari toolbox. The program was run on a 
1.3 GHz double-core PC computer.

The DC circuit has m=11 branches and n=5 nodes (not 
including the datum node). Every resistor has a nominal re-
sistance r̆μ=100Ω and an equal tolerance radius r̂μ which is 
defined as a certain percentage of r̆μ, i.e.

(32) r̂=r̂μ=τr̆μ, μ=1,...,m.

We have fixed τ=0.1. The source voltages are 
e1=e2=100V, e5=e7=10V. We note that in this example the 
parameter vector q is not present. The LIP system for the 
circuit considered (obtained by NA) is

(33a) G(p)x=I(p), p∈p',

(33b) pμ
'=1/rμ

', rμ
'=r̆μ+[-r̂μ, r̂μ], μ=1,...,m.
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 G11(p)=p1+p3+p6; G12(p)=-p3; G15(p)=-p6;
 G21(p)=G12(p); G22(p)=p2+p3+p4; G23(p)=-p4-p5;

(33c) G32(p)=G23(p); G33(p)=p4+p5+p7+p10; G34(p)=-p7;
 G43(p)=G34(p); G44(p)=p7+p8+p9; G45(p)=-p9;
 G51(p)=G15(p); G54(p)=G45(p); G55(p)=p6+p9+p11;

(33d) I1(p)=e1p1; I2(p)=e2p2-e5p5; 
     I3(p)=e5p5+e7p7; I4(p)=-e7p7.

4.1. Primary p-solution Formulation

By Theorem 3

t=(100   100   0   0   -10   0   10   0   0  0  0)T.

For this example method MI converges in 5 iterations 
and yields the outer interval solution x. Its fi rst component is

(34) x1
I = [55.10036, 66.93172]

(here and in what follows interval solutions are rounded out-
wardly). Method MA converges also in 5 iterations to pro-
duce the p-solution sought

(35) x(p)=x̆+Lp+[-x̂, x̂], p∈p.

We give data for its fi rst component 

(35a) x̆1=61.016043, x̂1=0.980712,

(35b) L(1:)=(1.751151 0.718065 -0.122766 -0.110727 
-0.169550 -0.926535 -0.010466 -0.173983 -0.070920 
-0.404930 -0.479339)

(L1: denotes the fi rst row of L). By the present method the 
outer interval solution x1

A is obtained reducing the p-solution 
(35) to an interval. Hence

(36) x1
A = [55.10036, 66.93172]

and it is seen that for this particular example x1
A=x1

I. How-
ever, xI and xA are computed for times t1=0.121s and t2=0.978s, 
respectively, so method MA is about 8 times slower (in its 
present implementation) than method MI. It should, how-
ever, be stressed that unlike method MI the present method 
MA provides by Theorem 2 the two-sided bounds on xk

* and 
x̄k

*. It has been obtained e1
l=[e1

l, ē1
l]=[55.10036, 56.07762]. 

As is known [11] x1
*=55.96681 and it is seen that indeed x1

*  
is in e1

l. In a similar way e1
u=[e1

u, ē1
u]=[65.95447, 66.93172], 

x̄1
*=66.84634, and also x̄1

* is in e1
u.

Better bounds e1
l and e1

u are obtained if ē1
l and e1

u 
are computed using Theorem 2. Now ē1

l=55.96681 and it 
is seen that ē1

l=x1
*; also e1

u=66.84634=x̄1
*. Thus, as expect-

ed the new bounds [55.10036, 55.96681] and [66.84634, 
66.93172] are narrower than the former bounds [55.10036, 
56.07762] and [65.95447, 66.93172].

Remark 4. It is claimed in [20], item (iii) of Theorem 
1, that the solutions of systems (23c) provide the respective 
endpoints xk

* and x̄k
* of the hull solution. Indeed, for the ex-

ample considered it is seen that ē1
l=x1

* and e1
u=x̄1

*. However, 
detailed analysis shows that this claim remains valid only 
if (for a fi xed center) the radius û  of the parameter vector u 
does not exceed some critical value û cr. Thus, for the pres-
ent example it has been established numerically that û cr is 
attained roughly for τcr=0.24. The theoretical determination 
or assessment of û cr is, for the time being, an open problem.    

The non-zero conditions of Assumption 1 remain valid 
also for k=2 to k=4. However, for k=5, l54=0 l55=0. The re-
maining non-zero elements lead to the sign vector

sl(1)=(1   1   -1   0   0   1   1   -1   -1   -1   -1).

We only sketch the computation of the bounds e1
l and 

e1
u when formulae (23) are used. First ē5

l is determined. Ac-
cording to Procedure 1 we determine the vector p(1) using 
(23a) with j≠4 and j≠5. Next we fi nd the p-solution (22) of 
(25a) (where m2=2) and see that the new l54<0 and l55<0. 
Thus we can fi nd the respective two-dimensional sign vector 
sl(1)=(1   1) and the corresponding p(2). Note that

sl=(1   1   -1   1   1   1   1   -1   -1   -1   -1).

Next, the total vector p'=(p(1), p(2)) is formed and ē5
l is 

found as the solution of A(p')x=b(p'). Finally

e5
l=[e5

l, ē5
l]=[55.10036, 56.07762].

The end e1
u is determined in a similar way using Pro-

cedure 2. Now 

su(1)=(-1   -1   1   0   0   -1   -1   1   1   1   1)

which leads to p̄(1). Then we fi nd he respective sign vector 
su(2)=(1   1) and the corresponding p̄(2) to form p̄'=(p̄(1)), p̄(2)). 
Finally, e1

u is the solution of A(p̄')x=b(p̄'). Thus, we have 
determined the bound

e5
u=[e5

u, ē5
u]=[65.95447, 66.93172]

Remark 5. If Assumption 1 is valid than from (23a) 
always su=-sl. In the general case, this equality may be vio-
lated. Indeed, in this example su(2)=sl(2) so

su=(-1   -1   1   1   1   -1   -1   1   1   1   1)

and it is seen that su≠-sl. This fact was experimentally es-
tablished in [11] in a much harder way using global or local 
monotonicity conditions.

4.2. Secondary p-solution Formulation

As an example of such formulation, consider the prob-
lem of computing an outer solution for the current i3. In this 
case we have

(37a) z=i3=(x1-x2)p3'.

Using the present paper’s approach, we have to deter-
mine the p-solution of the secondary problem (33), (37a). 
This can be done computing 

(37b) ⟨z⟩=(⟨x1⟩-⟨x2⟩)⟨p3'⟩.

L =

 1 1 0 0 1 1         0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
 
 
 

 0 0 1 1         1    1 1    1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0− − 
 
 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0− − − −1− −1 1− −1
 
 
 

 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0
 
 
 0 0
 
0 0 0 0
 

0 0 0 0
 

0 0 1 1
 

1 1 1 1
 

1 1 0 0
 

0 0 1 1
 

1 1 0 0
 

0 0 0 0
 

0 0 1 1
 

1 1           
 

           1     1 1     1
 

1     1 1     1 0 0
 

0 0

 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1           1     1 1     1 1 1− − 0 0 0 0 
 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1
 
 
 
 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1   − −   1 1 1 1− −1 1 1 1 0 0 0 0− −0 0 0 0 0 0 0 0− −0 0 0 0

,
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Thus, the secondary p-solution is 

(38a) z̆=0.043753, ẑ=0.016205,

(38b) Lz=(0.011160 -0.010529 0.002082 0.002237 
0.003425 -0.006738 0.001110 0.000195 0.000851 0.004704  
-0.002421).

To compare the efficiency of the two methods MI and 
MA we first reduce (38) to an interval 

(39a) i3
A=z=[z, z̄]=[-0.01379, 0.10546].

We now compute the respective interval obtained by 
method MI using the formula i3

I=(x1
I-x2

I)p'3:

(39b) i3
I=[-0.08459, 0.18085].

It should be stressed that, as seen from (39a) and (39b), 
the former interval is much narrower than the latter interval.

Next, we compute the bounds ez
l and ez

u on z* and z̄*, 
respectively. Using ēz

l=z̆-∑j|lj| and ez
u=z̆+∑j|lj| we have

ez
l=[-0.01379, 0.00038245], ez

u=[0.091288, 0.10546].

Finally, using (30a), (30b) slightly better results for 
ēz

l and ez
u are computed: ēz

l=0.00041946 and ez
u=0.091166. 

Thus, the bounds ez
l and ez

u on z* and z̄* are obtained

ez
l=[-0.01379, 0.00041946], ez

u=[0.091166, 0.10546].

Since the function in (37a) involves the nonlinear op-
eration of multiplication, the vertex property of z* and z̄* 
cannot be guaranteed. Therefore, the interval [ēz

l, ez
u] only 

provides an inner estimation zin=[0.00041946, 0.091166] of 
the hull solution z*.
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