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Abstract. Our focus is on one-dimensional fuzzy-rational gen-
eralized lotteries of I type, where the set of prizes is continuous, 
and the uncertainty is partially quantifi ed by p-ribbon distribution 
functions (CDFs). The p-ribbon CDFs originate from the interval 
estimates of quantiles. Our objective is to rank such alternatives 
using several modifi cations of the expected utility rule. Initially, we 
transform the p-ribbon functions into classical ones using one of 
three decision criteria Q under strict uncertainty – Wald, maximax 
and Hurwiczα. That approximated the p-fuzzy-rational generalized 
lotteries of I type into classical pQ-generalized lotteries of I type. 
We can then calculate the Wald, maximax and Hurwiczα expected 
utility to rank them. We prove that to fi nd those expected utilities 
we need to estimate the inner quantile indices of the CDF in the 
pQ-generalized lotteries of I type. A universal algorithm to fi nd 
the Wald-expected utility of a one-dimensional p-fuzzy-rational 
generalized lottery of I type is proposed, along with six simplifi ed 
algorithms analyzing the cases when the utility function is either 
partially linearly interpolated or arctan approximated and also 
interprets diff erent types of preferences (monotonic or non-mono-
tonic). The maximax and Hurwiczα expected utilities are then de-
rived using trivial modifi cations of the procedures developed for 
the Wald expected utility. Two numerical examples demonstrate the 
application of the procedures

1. Introduction

Risk is a key factor that leads to complexity in situa-
tions, where the decision maker (DM) must make a choice. 
There are several scenarios for decision making depending 
on the level of uncertainty. 

The scenario under strict certainty is where the DM 
knows for sure which state of nature will occur, therefore 
there is a direct link between the choice of action and the out-
come (that occurs with 100% chance). This setup is utilized 
to derive axioms of rational preference over alternatives, as 
well as to defi ne various types of numerical functions that 
measure preferences. All fi ndings are then applicable to the 
case under risk. 

The scenario of strict uncertainty has been addressed 
by many authors to arrive at several decision criteria, among 
which the Wald [Fabrycky et al., 1998], Hurwiczα [Yager, 
2006], and the maximax criteria [Hackett, Luff rum, 1999]. 
The Wald criterion is an extreme pessimistic technique and 
assumes that alternatives should be ranked in descending 
order of their worst outcome. The maximax criterion is the 
opposite and ranks alternatives in descending order of their 
best outcomes. A criterion that balances both those extremes 

is the Hurwiczα criterion. It fi nds the estimate of a pessimism 
index  αϵ[0;1], such that the higher α is the more pessimistic 
the DM. It then ranks the alternatives in descending order of 
the value of the worst and best prizes weighted by α, i.e. tak-
ing into account the actual pessimistic/optimistic profi le of 
the DM. Typically, α is estimated once for a given DM, but 
a more adequate approach is to defi ne it for each decision 
problem. As discussed in [French, Insua, 2010], none of the 
criteria under strict uncertainty obey the minimal require-
ments of rational choice. 

Decisions in the case of uncertainty are discussed in 
detail in [Etner et al., 2009]. The best-known and widely 
used technique for rational decisions under risk is the utility 
theory of Von Neumann and Morgenstern (1947). It off ers 
the lottery model as an adequate interpretation of alterna-
tives under risk. Lotteries are described as a full disjoint set 
of events each one of those giving a prize. When the set of 
prizes is fi nite, we introduce ordinary lotteries. When the set 
of prizes and/or the set of lotteries are continuous, then gen-
eralized lotteries of various types are introduced [Nikolova 
et al., 2010a]. Our paper shall focus on generalized lotteries 
of I type (GL-I) in the case of one-dimensional (1-D) priz-
es probabilistically described by a cumulative distribution 
function (CDF).

The uncertainty associated with the events in the lot-
teries is measured by probabilities, whereas the utility func-
tion u(.) measures how much the decision maker likes each 
of the prizes. The utility function u(.) is constructed so that 
it increases with the increase of preferences of the decision 
maker (DM) [Keeney, Raiff a, 1993]. Once probabilities and 
utilities are available, it is possible to calculate the expected 
utility of each lottery and rank them in descending order of 
this index [French, Insua, 2010]. 

The classical methods for elicitation suggest that the 
DM should identify unique probability and utility estimates. 
However, the real DM has limited ability to diff erentiate 
between close alternatives and can only elicit probabilities 
and utilities in an interval form. Subsequently, some of the 
axioms of rationality of choice do not hold, which is why 
[Nikolova, et al., 2005] discussed fuzzy-rational DMs. The 
interval nature of probabilities leads to the necessity to use 
ribbon distributions to describe uncertainty. For a 1-D ran-
dom variable, the CDF is then either x-ribbon or p-ribbon 
depending on the type of unquantifi ed uncertainty (on the 
quantile or on the quantile index) [Tenekedjiev, et al., 2006]. 
As a result, risky alternatives are represented as fuzzy-ratio-
nal lotteries and cannot be directly ranked according to ex-
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pected utility. What is possible is to approximate the ribbon 
distribution by a classical one using some of the above-men-
tioned criteria under strict uncertainty. What makes those 
criteria suitable is the essence of interval estimates. The true 
value of a given elicited parameter (either utility or proba-
bility) is any value between the lower and upper bound of 
its uncertainty interval. However, there is no way to know 
which one it is, with each value in the interval having the po-
tential to be the true one. This replicates the case under strict 
uncertainty, where the states of nature may be defi ned, but 
no information is available to defi ne their likelihoods. This 
justifi es the use of decision criteria under strict uncertainty 
as a systematic way to approximate ribbon distributions.

The process to rank fuzzy-rational GL-I with one-di-
mensional ribbon distribution functions was discussed in 
detail in [Tenekedjiev, et al., 2006]. The works [Nikolova, 
2007; Nikolova, Tenekedjieva, 2007] applied the Hurwiczα 
criterion to rank fuzzy-rational GL-I with x-ribbon distribu-
tions. The Hurwiczα, Wald and maximax criteria were also 
utilized in [Tenekedjiev, 2006] to rank fuzzy-rational ordi-
nary lotteries with p-ribbon distributions. 

The objective of this paper is to apply the Wald, max-
imax and Hurwiczα criteria under strict uncertainty to rank 
fuzzy-rational GL-I, where uncertainty is quantifi ed using 
p-ribbon functions. We give a clear defi nition of the general 
problem setup of ranking fuzzy-rational GL-I with p-ribbon 
functions. In addition to defi ning and solving the general 
problem of ranking fuzzy-rational lotteries, we also discuss 
several special cases for the various forms of the utility func-
tion (monotonic, non-monotonic, increasing or decreasing) 
and the way the utility function is constructed (either par-
tially linearly interpolated or arctan-approximated). We also 
present two empirical examples to demonstrate the applica-
tion of the algorithms and procedures. They present a case 
with partially linearly interpolated and with arctan-approx-
imated utility for non-monotonic and for decreasing prefer-
ences. 

2. Description of Uncertainty Using 
Probability Distributions

We typically quantify the uncertainty associated with 
continuous random variables X using various types of prob-
ability distributions. Their form and defi nition would change 
depending on whether we can entirely quantify the uncer-
tainty, or we measure it based on interval estimates. 

2.1. Probability Distributions when 
Uncertainty is Entirely Quantifi ed – 
the Classical Case

Assume that we have entirely quantifi ed the uncertain-
ty associated with a one-dimensional (1D) random variable 
X using a known 1D cumulative distribution function F(.), 
referred to as classical CDF and defi ned for x ϵ (-∞;+∞). 
Then for a given value x of X we know that

(1) F(x)=P(X≤x) for x ϵ (-∞;+∞).

The most convenient and often utilized approach to 
construct such classical distribution functions is through 
partially linear interpolation using a set of z>1 preliminari-
ly chosen points from the function that obey the following 
conditions:

Each pair (xl, Fl) is called a node, where xl is the α  
-quantile of the random variable X with α=F1 (for l=1,2,…, 
z). Then partially linear interpolation may be performed as 
follows:

2.2. Probability Distributions when 
Uncertainty is Partially Quantifi ed

Let the uncertainty in a 1-D random variable X be par-
tially quantifi ed by a 1-D distribution function FR(.). It is 
only known that it entirely lies between the so called lower 
and upper border functions Fd(.) and Fu(.), i.e.

(4) Fd(x) ≤ FR(x) ≤ Fu(x), for x ϵ (-∞;+∞).

Here, Fd(.) and Fu(.) are known classical distribution 
functions, which obey the condition

(5) Fd(x) ≤ Fu(x), for xϵ(-∞;+∞).

A 1-D distribution function FR(.) that obeys this defi ni-
tion shall be called ribbon distribution function. 

2.2.1. 1-D x-ribbon Distribution Functions 
A common special case is to construct distributions 

(usually subjective) by interpolation on nodes with an un-
certainty interval for the quantile (error on the abscissa x). 
Then the fuzzy distribution function may be called x-ribbon 
FxR(.), whereas the border functions are respectively lower 
and upper x-border functions Fxd(.) and Fxu(.). 

A convenient way to defi ne x-border distribution func-
tions is via partially linear interpolation on the margins of 
the set of z>1 defi ned uncertainty intervals for quantiles of 
the x-ribbon function:
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2.2.2. 1-D p-ribbon Distribution Functions
Another common approach is when (usually subjec-

tive) distributions are interpolated on nodes with uncer-
tainty interval for the quantile index (error on the ordinate, 
i.e. probability). Then the fuzzy distribution function may 
be called p-ribbon FpR(.), whereas the border functions are 
respectively lower and upper p-border functions Fpd(.) and 
Fpu(.).

A convenient way to defi ne p-border distribution func-
tions is by partially linear interpolation on the borders of the 
set of z>1 defi ned uncertainty intervals for quantile indices 
of the p-ribbon function:
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each alternative in L the prize x→ is a realization of continu-
ous or mixed random variable X described with its CDF. If 
L is countable then the elements of L are called generalized 
lotteries of fi rst type GL-I. To achieve rational ranking of 
alternatives we need to build the utility function u(.) over all 
possible values of X for all alternatives in L. As mentioned in 
the introduction the alternatives should be ranked according 
to the expected utility of each alternative. In this paper we 
will deal with 1D prizes, so the CDF of each alternative in 
L will be 1D too.

3.1. One-dimensional Generalized Lotteries 
of I Type with Entirely Quantifi ed Uncertainty

Let’s compare q alternatives according to DM's prefer-
ence. Each alternative gives 1-D prizes x with a utility func-
tion u(.), defi ned for all possible prizes from all alternatives.

A 1-D generalized lottery of I type with a classical dis-
tribution function Fk(.) shall be called classical risky gener-
alized lottery of I type: 

(14) gk=<Fk(x) ; x >, for k=1,2,…, q.

A theorem [French, Insua, 2010] proves that such lot-
teries should be ranked in descending order of the expected 
utility, which is calculated as a Stieltjes integral:

Let us have a special case, when Fk(.) is a partially 
linear distribution function with nodes
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(13)  Fpd(x)   FpR(x) Fpu(x), for ( ; )x   .
  

 
 

3. Ranking Alternatives Modeled  
as 1-D Generalized Lotteries of I Type 
Подзаглавие І степен 
 

The problem, which we face is to select the best 
alternative out of a set of alternatives L a.k.a lottery set. Let 
for each alternative in L the prize x  is a realization of 
continuous or mixed random variable X described with its 
CDF. If L is countable then the elements of L are called 
generalized lotteries of first type GL-I. To achieve rational 
ranking of alternatives we need to build the utility function 
u(.) over all possible values of X for all alternatives in L. As 
mentioned in the introduction the alternatives should be 
ranked according to the expected utility of each alternative. 
In this paper we will deal with 1D prizes, so the CDF of 
each alternative in L will be 1D too. 
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3.1. One-dimensional Generalized Lotteries  
of I Type with Entirely Quantified Uncertainty 
Подзаглавие ІІ степен 

Let’s compare q alternatives according to DM's 
preference. Each alternative gives 1-D prizes x with a utility 
function u(.), defined for all possible prizes from all 
alternatives. 

A 1-D generalized lottery of I type with a classical 
distribution function Fk(.) shall be called classical risky 
generalized lottery of I type:  

(14) gk=<Fk(x) ; x >, for k=1,2,…, q .   
 

A theorem [French, Insua, 2010] proves that such 
lotteries should be ranked in descending order of the 
expected utility, which is calculated as a Stieltjes integral: 

(15)      |k k kE u F u x dF x




  .  

  
Let us have a special case, when Fk(.) is a partially 

linear distribution function with nodes 

(16)      ; | 1, 2, ,k k
i i kx F i z  , where 

  
     
1 2 ...

k

k k k
zx x x   ,    
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k

k k k
zF F F     .   

This is the most common approach to construct Fk(.) 
and practically the one utilized when solving decision tasks. 
Then the expected utility is brought down to the following 
[Nikolova et al., 2010a]: 

(17)   

     

   

     
 

 

   

       
   

1

1

1

1
1

=1 1

1

1
1

|

d

k
ik

k
ik k

i i

k

k k
i i

k k k

xz k k
ii

k k
i ii x

x x

z
k k k

i ii
i

x x

E u F u x dF x

F F
u x x

x x

F F u x























 


 



 



 



   

  
Here, the integral under the first summation is a 

Riemann integral and causes no problems. The solution (17) 
works equally well for continuous r.v and for mixed r.v. 

There are two special cases for the description of 
utility, which dominate in practice. 

 
3.1.1. Partially Linear-Interpolated Utility 

A common way to construct the utility function is 
through partially linear interpolation on a set of zu>1 nodes 

containing only point estimates: 
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The resulting partially linearly interpolated utility 
function, whose domain is the closed interval [xd ; xu], takes 
the form: 
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Since the CDF is partially linearly interpolated on the 
nodes (16) and the utility is partially linearly interpolated on 
the nodes (18) we can add additional nodes which lie on the 
initial lines and the functions will not change. Using the 
stated property an algorithm has been provided in [Nikolova 
et al., 2010b] to create a set of z(k)g triplets: 

(20)       ; ;k g k g k g
i i ix F u , for i=1, 2, …, z(k)g.   

Here, the utility function and the distribution function 
are interpolated on nodes with the same abscissas. In the 
same source it is proven that the expected utility (17) can be 
simplified to 
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3.1.2. Arctan Approximated Utility 
One possible way to construct the utility function once 

data nodes are available is through approximation with a 
given analytical form. Many such forms can be found in 
[Keeney, Raiffa, 1993]. This is suitable in cases with a 
small number of elicited nodes and/or wide uncertainty 
intervals. The work [Nikolova, 2007] proposed a form for 
the case of strictly increasing preferences: 
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Here, arctan(.) is the inverse tangent function. The end 
nodes do not contain error and are u(xd)=0, u(xu)=1. This 
form is proven to suit to prize sets containing both gains and 
losses. The parameter a>0 relates to the risk sensitivity of 
the DM, whereas x0 is the inflex point in u(.), which divides 
the interval of prizes into two sections – risk prone section 
(to the left), and risk averse section (to the right).  

The work [Nikolova, 2007] proposed a form for the 
case of strictly decreasing preferences: 
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function u(.), defined for all possible prizes from all 
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Here, the integral under the first summation is a 

Riemann integral and causes no problems. The solution (17) 
works equally well for continuous r.v and for mixed r.v. 

There are two special cases for the description of 
utility, which dominate in practice. 

 
3.1.1. Partially Linear-Interpolated Utility 

A common way to construct the utility function is 
through partially linear interpolation on a set of zu>1 nodes 

containing only point estimates: 
 
(18) 

  ; | 1, 2, ,u u u
j jx u j z  , 

1 2 u
u u u

d uzx x x x x     . 

   
1  and   for 1, 2,...,

k

k k
d uzx x x x k q    

 

The resulting partially linearly interpolated utility 
function, whose domain is the closed interval [xd ; xu], takes 
the form: 
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Since the CDF is partially linearly interpolated on the 
nodes (16) and the utility is partially linearly interpolated on 
the nodes (18) we can add additional nodes which lie on the 
initial lines and the functions will not change. Using the 
stated property an algorithm has been provided in [Nikolova 
et al., 2010b] to create a set of z(k)g triplets: 

(20)       ; ;k g k g k g
i i ix F u , for i=1, 2, …, z(k)g.   

Here, the utility function and the distribution function 
are interpolated on nodes with the same abscissas. In the 
same source it is proven that the expected utility (17) can be 
simplified to 
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3.1.2. Arctan Approximated Utility 
One possible way to construct the utility function once 

data nodes are available is through approximation with a 
given analytical form. Many such forms can be found in 
[Keeney, Raiffa, 1993]. This is suitable in cases with a 
small number of elicited nodes and/or wide uncertainty 
intervals. The work [Nikolova, 2007] proposed a form for 
the case of strictly increasing preferences: 
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Here, arctan(.) is the inverse tangent function. The end 
nodes do not contain error and are u(xd)=0, u(xu)=1. This 
form is proven to suit to prize sets containing both gains and 
losses. The parameter a>0 relates to the risk sensitivity of 
the DM, whereas x0 is the inflex point in u(.), which divides 
the interval of prizes into two sections – risk prone section 
(to the left), and risk averse section (to the right).  

The work [Nikolova, 2007] proposed a form for the 
case of strictly decreasing preferences: 
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This is the most common approach to construct F (.) 
and practically the one utilized when solving decision tasks. 
Then the expected utility is brought down to the following 
[Nikolova et al., 2010a]:

Here, the integral under the fi rst summation is a Rie-
mann integral and causes no problems. The solution (17) 
works equally well for continuous r.v and for mixed r.v.

There are two special cases for the description of utili-
ty, which dominate in practice.

3.1.1. Partially Linear-Interpolated Utility
A common way to construct the utility function is 

through partially linear interpolation on a set of zu>1 nodes 
containing only point estimates:

The resulting partially linearly interpolated utility 
function, whose domain is the closed interval [xd; xu], takes 
the form:

Since the CDF is partially linearly interpolated on the 
nodes (16) and the utility is partially linearly interpolated 
on the nodes (18) we can add additional nodes which lie on 
the initial lines and the functions will not change. Using the 
stated property an algorithm has been provided in [Nikolova 
et al., 2010b] to create a set of z(k)g triplets:

Here, the utility function and the distribution function 
are interpolated on nodes with the same abscissas. In the 
same source it is proven that the expected utility (17) can be 
simplifi ed to

3.1.2. Arctan Approximated Utility
One possible way to construct the utility function once 

data nodes are available is through approximation with a 
given analytical form. Many such forms can be found in 
[Keeney, Raiff a, 1993]. This is suitable in cases with a small 
number of elicited nodes and/or wide uncertainty intervals. 
The work [Nikolova, 2007] proposed a form for the case of 
strictly increasing preferences:

Here, arctan(.) is the inverse tangent function. The end 
nodes do not contain error and are u(xd)=0, u(xu)=1. This 
form is proven to suit to prize sets containing both gains and 
losses. The parameter a>0 relates to the risk sensitivity of 
the DM, whereas x0 is the infl ex point in u(.), which divides 
the interval of prizes into two sections – risk prone section 
(to the left), and risk averse section (to the right). 

The work [Nikolova, 2007] proposed a form for the 
case of strictly decreasing preferences:

The parameter a>0 again relates to the risk sensitiv-
ity of the DM, whereas x0 is the infl ex point in u(.), which 
divides the interval of prizes into two sections – risk averse 
section (to the left), and risk prone section (to the right). 

In [Nikolova et al., 2009] several reasons have been 
outlined to use (22) or (23) for the case of strictly mono-
tonic preferences when the nodes of the utility function are 
assessed in an interval form (almost always). The unknown 
parameters a and x0 can be identifi ed by x2-minimization 
[Nikolova, 2007] using the weighted least square method 
[Press et al., 2007].  

For the case of strictly increasing utility, (22) may be 
represented as

(24) u(x) = Aincrarctan (ax - ax0) + Bincr
where

For the case of strictly decreasing utility, (23) may be 
represented as

(26) u(x) = Adecrarctan (ax - ax0) + Bdecr
where

It is convenient to unite (24) and (26) into a general 
form for the acrtan-approximated utility when preferences 
are monotonic:
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3.1. One-dimensional Generalized Lotteries  
of I Type with Entirely Quantified Uncertainty 
Подзаглавие ІІ степен 

Let’s compare q alternatives according to DM's 
preference. Each alternative gives 1-D prizes x with a utility 
function u(.), defined for all possible prizes from all 
alternatives. 

A 1-D generalized lottery of I type with a classical 
distribution function Fk(.) shall be called classical risky 
generalized lottery of I type:  

(14) gk=<Fk(x) ; x >, for k=1,2,…, q .   
 

A theorem [French, Insua, 2010] proves that such 
lotteries should be ranked in descending order of the 
expected utility, which is calculated as a Stieltjes integral: 

(15)      |k k kE u F u x dF x




  .  

  
Let us have a special case, when Fk(.) is a partially 

linear distribution function with nodes 

(16)      ; | 1, 2, ,k k
i i kx F i z  , where 
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This is the most common approach to construct Fk(.) 
and practically the one utilized when solving decision tasks. 
Then the expected utility is brought down to the following 
[Nikolova et al., 2010a]: 
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Here, the integral under the first summation is a 

Riemann integral and causes no problems. The solution (17) 
works equally well for continuous r.v and for mixed r.v. 

There are two special cases for the description of 
utility, which dominate in practice. 

 
3.1.1. Partially Linear-Interpolated Utility 

A common way to construct the utility function is 
through partially linear interpolation on a set of zu>1 nodes 

containing only point estimates: 
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The resulting partially linearly interpolated utility 
function, whose domain is the closed interval [xd ; xu], takes 
the form: 

(19)

   
 

1 1

1

( )

,

=1, 2, ...,

,

=1, 2, ..., 1

u
ju

j u

u u u u
j j j ju u

j j u u u
j j

u x

x x
u

j z

u u x x x
u x x

x x j z

 





 

 

  
 

 

 

Since the CDF is partially linearly interpolated on the 
nodes (16) and the utility is partially linearly interpolated on 
the nodes (18) we can add additional nodes which lie on the 
initial lines and the functions will not change. Using the 
stated property an algorithm has been provided in [Nikolova 
et al., 2010b] to create a set of z(k)g triplets: 

(20)       ; ;k g k g k g
i i ix F u , for i=1, 2, …, z(k)g.   

Here, the utility function and the distribution function 
are interpolated on nodes with the same abscissas. In the 
same source it is proven that the expected utility (17) can be 
simplified to 
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3.1.2. Arctan Approximated Utility 
One possible way to construct the utility function once 

data nodes are available is through approximation with a 
given analytical form. Many such forms can be found in 
[Keeney, Raiffa, 1993]. This is suitable in cases with a 
small number of elicited nodes and/or wide uncertainty 
intervals. The work [Nikolova, 2007] proposed a form for 
the case of strictly increasing preferences: 

(22)      
   

0 0

0 0

arctan arctan
( )

arctan arctan
d

u d

ax ax ax ax
u x

ax ax ax ax
  


  

  

Here, arctan(.) is the inverse tangent function. The end 
nodes do not contain error and are u(xd)=0, u(xu)=1. This 
form is proven to suit to prize sets containing both gains and 
losses. The parameter a>0 relates to the risk sensitivity of 
the DM, whereas x0 is the inflex point in u(.), which divides 
the interval of prizes into two sections – risk prone section 
(to the left), and risk averse section (to the right).  

The work [Nikolova, 2007] proposed a form for the 
case of strictly decreasing preferences: 
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Here, the integral under the first summation is a 

Riemann integral and causes no problems. The solution (17) 
works equally well for continuous r.v and for mixed r.v. 

There are two special cases for the description of 
utility, which dominate in practice. 
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A common way to construct the utility function is 
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Since the CDF is partially linearly interpolated on the 
nodes (16) and the utility is partially linearly interpolated on 
the nodes (18) we can add additional nodes which lie on the 
initial lines and the functions will not change. Using the 
stated property an algorithm has been provided in [Nikolova 
et al., 2010b] to create a set of z(k)g triplets: 

(20)       ; ;k g k g k g
i i ix F u , for i=1, 2, …, z(k)g.   

Here, the utility function and the distribution function 
are interpolated on nodes with the same abscissas. In the 
same source it is proven that the expected utility (17) can be 
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3.1.2. Arctan Approximated Utility 
One possible way to construct the utility function once 

data nodes are available is through approximation with a 
given analytical form. Many such forms can be found in 
[Keeney, Raiffa, 1993]. This is suitable in cases with a 
small number of elicited nodes and/or wide uncertainty 
intervals. The work [Nikolova, 2007] proposed a form for 
the case of strictly increasing preferences: 
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Here, arctan(.) is the inverse tangent function. The end 
nodes do not contain error and are u(xd)=0, u(xu)=1. This 
form is proven to suit to prize sets containing both gains and 
losses. The parameter a>0 relates to the risk sensitivity of 
the DM, whereas x0 is the inflex point in u(.), which divides 
the interval of prizes into two sections – risk prone section 
(to the left), and risk averse section (to the right).  

The work [Nikolova, 2007] proposed a form for the 
case of strictly decreasing preferences: 
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3.1.2. Arctan Approximated Utility 
One possible way to construct the utility function once 

data nodes are available is through approximation with a 
given analytical form. Many such forms can be found in 
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small number of elicited nodes and/or wide uncertainty 
intervals. The work [Nikolova, 2007] proposed a form for 
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Here, arctan(.) is the inverse tangent function. The end 
nodes do not contain error and are u(xd)=0, u(xu)=1. This 
form is proven to suit to prize sets containing both gains and 
losses. The parameter a>0 relates to the risk sensitivity of 
the DM, whereas x0 is the inflex point in u(.), which divides 
the interval of prizes into two sections – risk prone section 
(to the left), and risk averse section (to the right).  
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Here, arctan(.) is the inverse tangent function. The end 
nodes do not contain error and are u(xd)=0, u(xu)=1. This 
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The work [Nikolova, 2007] proposed a form for the 
case of strictly decreasing preferences: 
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3.1. One-dimensional Generalized Lotteries  
of I Type with Entirely Quantified Uncertainty 
Подзаглавие ІІ степен 

Let’s compare q alternatives according to DM's 
preference. Each alternative gives 1-D prizes x with a utility 
function u(.), defined for all possible prizes from all 
alternatives. 

A 1-D generalized lottery of I type with a classical 
distribution function Fk(.) shall be called classical risky 
generalized lottery of I type:  

(14) gk=<Fk(x) ; x >, for k=1,2,…, q .   
 

A theorem [French, Insua, 2010] proves that such 
lotteries should be ranked in descending order of the 
expected utility, which is calculated as a Stieltjes integral: 

(15)      |k k kE u F u x dF x




  .  

  
Let us have a special case, when Fk(.) is a partially 

linear distribution function with nodes 

(16)      ; | 1, 2, ,k k
i i kx F i z  , where 

  
     
1 2 ...

k

k k k
zx x x   ,    

     
1 20 ... 1

k

k k k
zF F F     .   

This is the most common approach to construct Fk(.) 
and practically the one utilized when solving decision tasks. 
Then the expected utility is brought down to the following 
[Nikolova et al., 2010a]: 

(17)   
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Here, the integral under the first summation is a 

Riemann integral and causes no problems. The solution (17) 
works equally well for continuous r.v and for mixed r.v. 

There are two special cases for the description of 
utility, which dominate in practice. 

 
3.1.1. Partially Linear-Interpolated Utility 

A common way to construct the utility function is 
through partially linear interpolation on a set of zu>1 nodes 

containing only point estimates: 
 
(18) 

  ; | 1, 2, ,u u u
j jx u j z  , 

1 2 u
u u u

d uzx x x x x     . 

   
1  and   for 1, 2,...,

k

k k
d uzx x x x k q    

 

The resulting partially linearly interpolated utility 
function, whose domain is the closed interval [xd ; xu], takes 
the form: 

(19)
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
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 
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Since the CDF is partially linearly interpolated on the 
nodes (16) and the utility is partially linearly interpolated on 
the nodes (18) we can add additional nodes which lie on the 
initial lines and the functions will not change. Using the 
stated property an algorithm has been provided in [Nikolova 
et al., 2010b] to create a set of z(k)g triplets: 

(20)       ; ;k g k g k g
i i ix F u , for i=1, 2, …, z(k)g.   

Here, the utility function and the distribution function 
are interpolated on nodes with the same abscissas. In the 
same source it is proven that the expected utility (17) can be 
simplified to 

(21)            
  1

1 1
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1|
2

k gz
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k k i ii i
i

E u F F F u u


      

3.1.2. Arctan Approximated Utility 
One possible way to construct the utility function once 

data nodes are available is through approximation with a 
given analytical form. Many such forms can be found in 
[Keeney, Raiffa, 1993]. This is suitable in cases with a 
small number of elicited nodes and/or wide uncertainty 
intervals. The work [Nikolova, 2007] proposed a form for 
the case of strictly increasing preferences: 

(22)      
   

0 0

0 0

arctan arctan
( )

arctan arctan
d

u d

ax ax ax ax
u x

ax ax ax ax
  


  

  

Here, arctan(.) is the inverse tangent function. The end 
nodes do not contain error and are u(xd)=0, u(xu)=1. This 
form is proven to suit to prize sets containing both gains and 
losses. The parameter a>0 relates to the risk sensitivity of 
the DM, whereas x0 is the inflex point in u(.), which divides 
the interval of prizes into two sections – risk prone section 
(to the left), and risk averse section (to the right).  

The work [Nikolova, 2007] proposed a form for the 
case of strictly decreasing preferences: 
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(23)    
   
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The parameter a>0 again relates to the risk sensitivity 
of the DM, whereas x0 is the inflex point in u(.), which 
divides the interval of prizes into two sections – risk averse 
section (to the left), and risk prone section (to the right).  

In [Nikolova et al., 2009] several reasons have been 
outlined to use (22) or (23) for the case of strictly 
monotonic preferences when the nodes of the utility 
function are assessed in an interval form (almost always). 
The unknown parameters a and x0 can be identified by 2 -
minimization [Nikolova, 2007] using the weighted least 
square method [Press et al., 2007].   

 For the case of strictly increasing utility, (22) may be 
represented as 

(24)  0( ) arctanincr incru x A ax ax B    
  

where 
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For the case of strictly decreasing utility, (23) may be 
represented as 

(26)   0( ) arctandecr decru x A ax ax B      
where 
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It is convenient to unite (24) and (26) into a general 
form for the acrtan-approximated utility when preferences 
are monotonic: 

(28)  0( ) arctanu x A ax ax B       
After substituting (28) in (17) it is possible to derive a 

closed formula for the expected utility integral of GL-I for 
the case of arctan approximated utility with partially linearly 
interpolated CDF: 

(29)
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where  

(30)  
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Formulae (29) and (30) are proven in the Appendix. 

The above formulae were coined in [Nikolova et al., 2010b] 
but without formal proof and just for the case of increasing 
preferences.  

 
3.2. One-dimensional Generalized Lotteries  
of First Type with Partially Quantified 
Uncertainty Подзаглавие ІІ степен 
 
3.2.1. Basic Definitions  

A one-dimensional GL-I with a one-dimensional 
ribbon CDF shall be referred to as a one-dimensional fuzzy 
rational GL-I: 

(31)  ;fr R
kkg F x x  , k=1, 2, …, q. 

  
Here (.)R

kF  is a one-dimensional ribbon CDF with 

lower and upper distributional bounds (.)d
kF  and (.)u

kF . 
1-D fuzzy-rational generalized lotteries of I type may 

be ranked at two stages: 
1) Using a Q criterion under strict uncertainty, each 

one-dimensional ribbon CDF (.)R
kF  is approximated by a 

one-dimensional classical CDF  .Q
kF , which obeys the 

following condition for all ( ; )x    
(32)      Qd u

k kkF x F x F x  ,  k=1, 2, …, q.  
In that way each one-dimensional fuzzy rational GL-I 

is approximated by a one-dimensional classical risky GL-I, 
that shall be referred to as Q-generalized (one-dimensional 
Q-GL-I), 

(33)  ;Q Q
k kg F x x   for k=1,2,…,q. 

  
2) The alternatives are ranked in descending order of 

the expected utilities of the one-dimensional Q-GL-I, using 
(15) 

(34)      |Q QR
kk kE u F u x dF x





  , for k=1,2,…,q.

  
Equation (34) uses a Stieltjes integral with an 

integrating function  .Q
kF . 

The resulting criterion to rank one-dimensional fuzzy 
rational GL-I shall be called Q-expected utility. In this paper 
we will use 3 criteria for strict uncertainty – Wald 
[Fabrycky et al., 1998], maximax [Hackett, Luffrum, 1999] 
and Hurwiczα [Yager, 2006]. The approximation of (.)R

kF  
by  .Q

kF  for the discussed criteria under strict uncertainty 
essentially relies on the availability of one-dimensional 
utility function u(.) defined over all values of X. 

Our paper will deal only with p-ribbon CDFs.  
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The parameter a>0 again relates to the risk sensitivity 
of the DM, whereas x0 is the inflex point in u(.), which 
divides the interval of prizes into two sections – risk averse 
section (to the left), and risk prone section (to the right).  

In [Nikolova et al., 2009] several reasons have been 
outlined to use (22) or (23) for the case of strictly 
monotonic preferences when the nodes of the utility 
function are assessed in an interval form (almost always). 
The unknown parameters a and x0 can be identified by 2 -
minimization [Nikolova, 2007] using the weighted least 
square method [Press et al., 2007].   

 For the case of strictly increasing utility, (22) may be 
represented as 

(24)  0( ) arctanincr incru x A ax ax B    
  

where 
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For the case of strictly decreasing utility, (23) may be 
represented as 

(26)   0( ) arctandecr decru x A ax ax B      
where 
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It is convenient to unite (24) and (26) into a general 
form for the acrtan-approximated utility when preferences 
are monotonic: 

(28)  0( ) arctanu x A ax ax B       
After substituting (28) in (17) it is possible to derive a 

closed formula for the expected utility integral of GL-I for 
the case of arctan approximated utility with partially linearly 
interpolated CDF: 

(29)
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where  
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Formulae (29) and (30) are proven in the Appendix. 

The above formulae were coined in [Nikolova et al., 2010b] 
but without formal proof and just for the case of increasing 
preferences.  

 
3.2. One-dimensional Generalized Lotteries  
of First Type with Partially Quantified 
Uncertainty Подзаглавие ІІ степен 
 
3.2.1. Basic Definitions  

A one-dimensional GL-I with a one-dimensional 
ribbon CDF shall be referred to as a one-dimensional fuzzy 
rational GL-I: 

(31)  ;fr R
kkg F x x  , k=1, 2, …, q. 

  
Here (.)R

kF  is a one-dimensional ribbon CDF with 

lower and upper distributional bounds (.)d
kF  and (.)u

kF . 
1-D fuzzy-rational generalized lotteries of I type may 

be ranked at two stages: 
1) Using a Q criterion under strict uncertainty, each 

one-dimensional ribbon CDF (.)R
kF  is approximated by a 

one-dimensional classical CDF  .Q
kF , which obeys the 

following condition for all ( ; )x    
(32)      Qd u

k kkF x F x F x  ,  k=1, 2, …, q.  
In that way each one-dimensional fuzzy rational GL-I 

is approximated by a one-dimensional classical risky GL-I, 
that shall be referred to as Q-generalized (one-dimensional 
Q-GL-I), 

(33)  ;Q Q
k kg F x x   for k=1,2,…,q. 

  
2) The alternatives are ranked in descending order of 

the expected utilities of the one-dimensional Q-GL-I, using 
(15) 

(34)      |Q QR
kk kE u F u x dF x





  , for k=1,2,…,q.

  
Equation (34) uses a Stieltjes integral with an 

integrating function  .Q
kF . 

The resulting criterion to rank one-dimensional fuzzy 
rational GL-I shall be called Q-expected utility. In this paper 
we will use 3 criteria for strict uncertainty – Wald 
[Fabrycky et al., 1998], maximax [Hackett, Luffrum, 1999] 
and Hurwiczα [Yager, 2006]. The approximation of (.)R

kF  
by  .Q

kF  for the discussed criteria under strict uncertainty 
essentially relies on the availability of one-dimensional 
utility function u(.) defined over all values of X. 

Our paper will deal only with p-ribbon CDFs.  
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The parameter a>0 again relates to the risk sensitivity 
of the DM, whereas x0 is the inflex point in u(.), which 
divides the interval of prizes into two sections – risk averse 
section (to the left), and risk prone section (to the right).  

In [Nikolova et al., 2009] several reasons have been 
outlined to use (22) or (23) for the case of strictly 
monotonic preferences when the nodes of the utility 
function are assessed in an interval form (almost always). 
The unknown parameters a and x0 can be identified by 2 -
minimization [Nikolova, 2007] using the weighted least 
square method [Press et al., 2007].   

 For the case of strictly increasing utility, (22) may be 
represented as 

(24)  0( ) arctanincr incru x A ax ax B    
  

where 
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For the case of strictly decreasing utility, (23) may be 
represented as 

(26)   0( ) arctandecr decru x A ax ax B      
where 
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It is convenient to unite (24) and (26) into a general 
form for the acrtan-approximated utility when preferences 
are monotonic: 

(28)  0( ) arctanu x A ax ax B       
After substituting (28) in (17) it is possible to derive a 

closed formula for the expected utility integral of GL-I for 
the case of arctan approximated utility with partially linearly 
interpolated CDF: 

(29)
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where  
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Formulae (29) and (30) are proven in the Appendix. 

The above formulae were coined in [Nikolova et al., 2010b] 
but without formal proof and just for the case of increasing 
preferences.  

 
3.2. One-dimensional Generalized Lotteries  
of First Type with Partially Quantified 
Uncertainty Подзаглавие ІІ степен 
 
3.2.1. Basic Definitions  

A one-dimensional GL-I with a one-dimensional 
ribbon CDF shall be referred to as a one-dimensional fuzzy 
rational GL-I: 

(31)  ;fr R
kkg F x x  , k=1, 2, …, q. 

  
Here (.)R

kF  is a one-dimensional ribbon CDF with 

lower and upper distributional bounds (.)d
kF  and (.)u

kF . 
1-D fuzzy-rational generalized lotteries of I type may 

be ranked at two stages: 
1) Using a Q criterion under strict uncertainty, each 

one-dimensional ribbon CDF (.)R
kF  is approximated by a 

one-dimensional classical CDF  .Q
kF , which obeys the 

following condition for all ( ; )x    
(32)      Qd u

k kkF x F x F x  ,  k=1, 2, …, q.  
In that way each one-dimensional fuzzy rational GL-I 

is approximated by a one-dimensional classical risky GL-I, 
that shall be referred to as Q-generalized (one-dimensional 
Q-GL-I), 

(33)  ;Q Q
k kg F x x   for k=1,2,…,q. 

  
2) The alternatives are ranked in descending order of 

the expected utilities of the one-dimensional Q-GL-I, using 
(15) 

(34)      |Q QR
kk kE u F u x dF x





  , for k=1,2,…,q.

  
Equation (34) uses a Stieltjes integral with an 

integrating function  .Q
kF . 

The resulting criterion to rank one-dimensional fuzzy 
rational GL-I shall be called Q-expected utility. In this paper 
we will use 3 criteria for strict uncertainty – Wald 
[Fabrycky et al., 1998], maximax [Hackett, Luffrum, 1999] 
and Hurwiczα [Yager, 2006]. The approximation of (.)R

kF  
by  .Q

kF  for the discussed criteria under strict uncertainty 
essentially relies on the availability of one-dimensional 
utility function u(.) defined over all values of X. 

Our paper will deal only with p-ribbon CDFs.  
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(28) u(x) = A× arctan (ax - ax0) + B.
After substituting (28) in (17) it is possible to derive a 

closed formula for the expected utility integral of GL-I for 
the case of arctan approximated utility with partially linearly 
interpolated CDF:

Formulae (29) and (30) are proven in the Appendix. 
The above formulae were coined in [Nikolova et al., 2010b] 
but without formal proof and just for the case of increasing 
preferences. 

3.2. One-dimensional Generalized Lotteries 
of First Type with Partially Quantifi ed 
Uncertainty

3.2.1. Basic Defi nitions 
A one-dimensional GL-I with a one-dimensional rib-

bon CDF shall be referred to as a one-dimensional fuzzy ra-
tional GL-I:

Here Fk
R(.) is a one-dimensional ribbon CDF with low-

er and upper distributional bounds Fk
d (.) and Fk

u(.).
1-D fuzzy-rational generalized lotteries of I type may 

be ranked at two stages:
1) Using a Q criterion under strict uncertainty, each 

one-dimensional ribbon CDF Fk
R(.) is approximated by a 

one-dimensional classical CDF Fk
Q(.), which obeys the fol-

lowing condition for all x ϵ (-∞;+∞) 

In that way each one-dimensional fuzzy rational GL-I 
is approximated by a one-dimensional classical risky GL-I, 
that shall be referred to as Q-generalized (one-dimensional 
Q-GL-I),

2) The alternatives are ranked in descending order of 
the expected utilities of the one-dimensional Q-GL-I, using 
(15)

Equation (34) uses a Stieltjes integral with an integrat-
ing function Fk

Q(.).
The resulting criterion to rank one-dimensional fuzzy 

rational GL-I shall be called Q-expected utility. In this paper 
we will use 3 criteria for strict uncertainty – Wald [Fabrycky 
et al., 1998], maximax [Hackett, Luff rum, 1999] and Hur-
wiczα [Yager, 2006]. The approximation of Fk

R(.) by Fk
Q(.) 

for the discussed criteria under strict uncertainty essentially 
relies on the availability of one-dimensional utility function 
u(.) defi ned over all values of X.

Our paper will deal only with p-ribbon CDFs. 

3.2.2. Problem Setup for Fuzzy-Rational GL-I 
with p-ribbon CDF

A one-dimensional fuzzy rational GL-I with a p-ribbon 
CDF shall be called one-dimensional p-fuzzy rational GL-I:

Here Fk
pR (x) is a one-dimensional p-ribbon CDF, 

whose lower and upper p-distributional bounds are Fk
pd (.) 

and Fk
pu  (.). The latter are defi ned similarly to (11)-(13).
Calculating the Q-expected utility of the one-dimen-

sional p-fuzzy rational GL-I may be brought down to the 
following steps:

1) Using a Q criterion under strict uncertainty, the 
one-dimensional p-ribbon CDF Fk

pR (x) is piece-wise par-
tially linearly approximated by a one-dimensional classical 
CDF Fk

pQ (x) with nodes

In that way the one-dimensional p-fuzzy rational GL-I 
is approximated by a one-dimensional classical risky GL-I, 
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The parameter a>0 again relates to the risk sensitivity 
of the DM, whereas x0 is the inflex point in u(.), which 
divides the interval of prizes into two sections – risk averse 
section (to the left), and risk prone section (to the right).  

In [Nikolova et al., 2009] several reasons have been 
outlined to use (22) or (23) for the case of strictly 
monotonic preferences when the nodes of the utility 
function are assessed in an interval form (almost always). 
The unknown parameters a and x0 can be identified by 2 -
minimization [Nikolova, 2007] using the weighted least 
square method [Press et al., 2007].   
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represented as 
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It is convenient to unite (24) and (26) into a general 
form for the acrtan-approximated utility when preferences 
are monotonic: 

(28)  0( ) arctanu x A ax ax B       
After substituting (28) in (17) it is possible to derive a 

closed formula for the expected utility integral of GL-I for 
the case of arctan approximated utility with partially linearly 
interpolated CDF: 
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Formulae (29) and (30) are proven in the Appendix. 

The above formulae were coined in [Nikolova et al., 2010b] 
but without formal proof and just for the case of increasing 
preferences.  

 
3.2. One-dimensional Generalized Lotteries  
of First Type with Partially Quantified 
Uncertainty Подзаглавие ІІ степен 
 
3.2.1. Basic Definitions  

A one-dimensional GL-I with a one-dimensional 
ribbon CDF shall be referred to as a one-dimensional fuzzy 
rational GL-I: 

(31)  ;fr R
kkg F x x  , k=1, 2, …, q. 

  
Here (.)R

kF  is a one-dimensional ribbon CDF with 

lower and upper distributional bounds (.)d
kF  and (.)u

kF . 
1-D fuzzy-rational generalized lotteries of I type may 

be ranked at two stages: 
1) Using a Q criterion under strict uncertainty, each 

one-dimensional ribbon CDF (.)R
kF  is approximated by a 

one-dimensional classical CDF  .Q
kF , which obeys the 

following condition for all ( ; )x    
(32)      Qd u

k kkF x F x F x  ,  k=1, 2, …, q.  
In that way each one-dimensional fuzzy rational GL-I 

is approximated by a one-dimensional classical risky GL-I, 
that shall be referred to as Q-generalized (one-dimensional 
Q-GL-I), 

(33)  ;Q Q
k kg F x x   for k=1,2,…,q. 

  
2) The alternatives are ranked in descending order of 

the expected utilities of the one-dimensional Q-GL-I, using 
(15) 

(34)      |Q QR
kk kE u F u x dF x





  , for k=1,2,…,q.

  
Equation (34) uses a Stieltjes integral with an 

integrating function  .Q
kF . 

The resulting criterion to rank one-dimensional fuzzy 
rational GL-I shall be called Q-expected utility. In this paper 
we will use 3 criteria for strict uncertainty – Wald 
[Fabrycky et al., 1998], maximax [Hackett, Luffrum, 1999] 
and Hurwiczα [Yager, 2006]. The approximation of (.)R

kF  
by  .Q

kF  for the discussed criteria under strict uncertainty 
essentially relies on the availability of one-dimensional 
utility function u(.) defined over all values of X. 

Our paper will deal only with p-ribbon CDFs.  
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The parameter a>0 again relates to the risk sensitivity 
of the DM, whereas x0 is the inflex point in u(.), which 
divides the interval of prizes into two sections – risk averse 
section (to the left), and risk prone section (to the right).  

In [Nikolova et al., 2009] several reasons have been 
outlined to use (22) or (23) for the case of strictly 
monotonic preferences when the nodes of the utility 
function are assessed in an interval form (almost always). 
The unknown parameters a and x0 can be identified by 2 -
minimization [Nikolova, 2007] using the weighted least 
square method [Press et al., 2007].   
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For the case of strictly decreasing utility, (23) may be 
represented as 
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It is convenient to unite (24) and (26) into a general 
form for the acrtan-approximated utility when preferences 
are monotonic: 

(28)  0( ) arctanu x A ax ax B       
After substituting (28) in (17) it is possible to derive a 

closed formula for the expected utility integral of GL-I for 
the case of arctan approximated utility with partially linearly 
interpolated CDF: 

(29)
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Formulae (29) and (30) are proven in the Appendix. 

The above formulae were coined in [Nikolova et al., 2010b] 
but without formal proof and just for the case of increasing 
preferences.  

 
3.2. One-dimensional Generalized Lotteries  
of First Type with Partially Quantified 
Uncertainty Подзаглавие ІІ степен 
 
3.2.1. Basic Definitions  

A one-dimensional GL-I with a one-dimensional 
ribbon CDF shall be referred to as a one-dimensional fuzzy 
rational GL-I: 

(31)  ;fr R
kkg F x x  , k=1, 2, …, q. 

  
Here (.)R

kF  is a one-dimensional ribbon CDF with 

lower and upper distributional bounds (.)d
kF  and (.)u

kF . 
1-D fuzzy-rational generalized lotteries of I type may 

be ranked at two stages: 
1) Using a Q criterion under strict uncertainty, each 

one-dimensional ribbon CDF (.)R
kF  is approximated by a 

one-dimensional classical CDF  .Q
kF , which obeys the 

following condition for all ( ; )x    
(32)      Qd u

k kkF x F x F x  ,  k=1, 2, …, q.  
In that way each one-dimensional fuzzy rational GL-I 

is approximated by a one-dimensional classical risky GL-I, 
that shall be referred to as Q-generalized (one-dimensional 
Q-GL-I), 

(33)  ;Q Q
k kg F x x   for k=1,2,…,q. 

  
2) The alternatives are ranked in descending order of 

the expected utilities of the one-dimensional Q-GL-I, using 
(15) 

(34)      |Q QR
kk kE u F u x dF x





  , for k=1,2,…,q.

  
Equation (34) uses a Stieltjes integral with an 

integrating function  .Q
kF . 

The resulting criterion to rank one-dimensional fuzzy 
rational GL-I shall be called Q-expected utility. In this paper 
we will use 3 criteria for strict uncertainty – Wald 
[Fabrycky et al., 1998], maximax [Hackett, Luffrum, 1999] 
and Hurwiczα [Yager, 2006]. The approximation of (.)R

kF  
by  .Q

kF  for the discussed criteria under strict uncertainty 
essentially relies on the availability of one-dimensional 
utility function u(.) defined over all values of X. 

Our paper will deal only with p-ribbon CDFs.  
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The parameter a>0 again relates to the risk sensitivity 
of the DM, whereas x0 is the inflex point in u(.), which 
divides the interval of prizes into two sections – risk averse 
section (to the left), and risk prone section (to the right).  

In [Nikolova et al., 2009] several reasons have been 
outlined to use (22) or (23) for the case of strictly 
monotonic preferences when the nodes of the utility 
function are assessed in an interval form (almost always). 
The unknown parameters a and x0 can be identified by 2 -
minimization [Nikolova, 2007] using the weighted least 
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It is convenient to unite (24) and (26) into a general 
form for the acrtan-approximated utility when preferences 
are monotonic: 
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After substituting (28) in (17) it is possible to derive a 

closed formula for the expected utility integral of GL-I for 
the case of arctan approximated utility with partially linearly 
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Formulae (29) and (30) are proven in the Appendix. 

The above formulae were coined in [Nikolova et al., 2010b] 
but without formal proof and just for the case of increasing 
preferences.  
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A one-dimensional GL-I with a one-dimensional 
ribbon CDF shall be referred to as a one-dimensional fuzzy 
rational GL-I: 
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Here (.)R

kF  is a one-dimensional ribbon CDF with 

lower and upper distributional bounds (.)d
kF  and (.)u

kF . 
1-D fuzzy-rational generalized lotteries of I type may 

be ranked at two stages: 
1) Using a Q criterion under strict uncertainty, each 

one-dimensional ribbon CDF (.)R
kF  is approximated by a 
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(32)      Qd u

k kkF x F x F x  ,  k=1, 2, …, q.  
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that shall be referred to as Q-generalized (one-dimensional 
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Equation (34) uses a Stieltjes integral with an 

integrating function  .Q
kF . 

The resulting criterion to rank one-dimensional fuzzy 
rational GL-I shall be called Q-expected utility. In this paper 
we will use 3 criteria for strict uncertainty – Wald 
[Fabrycky et al., 1998], maximax [Hackett, Luffrum, 1999] 
and Hurwiczα [Yager, 2006]. The approximation of (.)R

kF  
by  .Q

kF  for the discussed criteria under strict uncertainty 
essentially relies on the availability of one-dimensional 
utility function u(.) defined over all values of X. 

Our paper will deal only with p-ribbon CDFs.  
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The parameter a>0 again relates to the risk sensitivity 
of the DM, whereas x0 is the inflex point in u(.), which 
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It is convenient to unite (24) and (26) into a general 
form for the acrtan-approximated utility when preferences 
are monotonic: 

(28)  0( ) arctanu x A ax ax B       
After substituting (28) in (17) it is possible to derive a 

closed formula for the expected utility integral of GL-I for 
the case of arctan approximated utility with partially linearly 
interpolated CDF: 
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Formulae (29) and (30) are proven in the Appendix. 

The above formulae were coined in [Nikolova et al., 2010b] 
but without formal proof and just for the case of increasing 
preferences.  

 
3.2. One-dimensional Generalized Lotteries  
of First Type with Partially Quantified 
Uncertainty Подзаглавие ІІ степен 
 
3.2.1. Basic Definitions  

A one-dimensional GL-I with a one-dimensional 
ribbon CDF shall be referred to as a one-dimensional fuzzy 
rational GL-I: 

(31)  ;fr R
kkg F x x  , k=1, 2, …, q. 

  
Here (.)R

kF  is a one-dimensional ribbon CDF with 

lower and upper distributional bounds (.)d
kF  and (.)u

kF . 
1-D fuzzy-rational generalized lotteries of I type may 

be ranked at two stages: 
1) Using a Q criterion under strict uncertainty, each 

one-dimensional ribbon CDF (.)R
kF  is approximated by a 

one-dimensional classical CDF  .Q
kF , which obeys the 

following condition for all ( ; )x    
(32)      Qd u

k kkF x F x F x  ,  k=1, 2, …, q.  
In that way each one-dimensional fuzzy rational GL-I 

is approximated by a one-dimensional classical risky GL-I, 
that shall be referred to as Q-generalized (one-dimensional 
Q-GL-I), 

(33)  ;Q Q
k kg F x x   for k=1,2,…,q. 

  
2) The alternatives are ranked in descending order of 

the expected utilities of the one-dimensional Q-GL-I, using 
(15) 

(34)      |Q QR
kk kE u F u x dF x





  , for k=1,2,…,q.

  
Equation (34) uses a Stieltjes integral with an 

integrating function  .Q
kF . 

The resulting criterion to rank one-dimensional fuzzy 
rational GL-I shall be called Q-expected utility. In this paper 
we will use 3 criteria for strict uncertainty – Wald 
[Fabrycky et al., 1998], maximax [Hackett, Luffrum, 1999] 
and Hurwiczα [Yager, 2006]. The approximation of (.)R

kF  
by  .Q

kF  for the discussed criteria under strict uncertainty 
essentially relies on the availability of one-dimensional 
utility function u(.) defined over all values of X. 

Our paper will deal only with p-ribbon CDFs.  
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The parameter a>0 again relates to the risk sensitivity 
of the DM, whereas x0 is the inflex point in u(.), which 
divides the interval of prizes into two sections – risk averse 
section (to the left), and risk prone section (to the right).  

In [Nikolova et al., 2009] several reasons have been 
outlined to use (22) or (23) for the case of strictly 
monotonic preferences when the nodes of the utility 
function are assessed in an interval form (almost always). 
The unknown parameters a and x0 can be identified by 2 -
minimization [Nikolova, 2007] using the weighted least 
square method [Press et al., 2007].   
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For the case of strictly decreasing utility, (23) may be 
represented as 
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It is convenient to unite (24) and (26) into a general 
form for the acrtan-approximated utility when preferences 
are monotonic: 

(28)  0( ) arctanu x A ax ax B       
After substituting (28) in (17) it is possible to derive a 

closed formula for the expected utility integral of GL-I for 
the case of arctan approximated utility with partially linearly 
interpolated CDF: 
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Formulae (29) and (30) are proven in the Appendix. 

The above formulae were coined in [Nikolova et al., 2010b] 
but without formal proof and just for the case of increasing 
preferences.  
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Here (.)R

kF  is a one-dimensional ribbon CDF with 

lower and upper distributional bounds (.)d
kF  and (.)u

kF . 
1-D fuzzy-rational generalized lotteries of I type may 

be ranked at two stages: 
1) Using a Q criterion under strict uncertainty, each 

one-dimensional ribbon CDF (.)R
kF  is approximated by a 

one-dimensional classical CDF  .Q
kF , which obeys the 

following condition for all ( ; )x    
(32)      Qd u

k kkF x F x F x  ,  k=1, 2, …, q.  
In that way each one-dimensional fuzzy rational GL-I 

is approximated by a one-dimensional classical risky GL-I, 
that shall be referred to as Q-generalized (one-dimensional 
Q-GL-I), 

(33)  ;Q Q
k kg F x x   for k=1,2,…,q. 

  
2) The alternatives are ranked in descending order of 

the expected utilities of the one-dimensional Q-GL-I, using 
(15) 
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kk kE u F u x dF x
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  , for k=1,2,…,q.

  
Equation (34) uses a Stieltjes integral with an 

integrating function  .Q
kF . 

The resulting criterion to rank one-dimensional fuzzy 
rational GL-I shall be called Q-expected utility. In this paper 
we will use 3 criteria for strict uncertainty – Wald 
[Fabrycky et al., 1998], maximax [Hackett, Luffrum, 1999] 
and Hurwiczα [Yager, 2006]. The approximation of (.)R

kF  
by  .Q

kF  for the discussed criteria under strict uncertainty 
essentially relies on the availability of one-dimensional 
utility function u(.) defined over all values of X. 

Our paper will deal only with p-ribbon CDFs.  
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3.2.2. Problem Setup for Fuzzy-Rational GL-I 
with p-ribbon CDF 

A one-dimensional fuzzy rational GL-I with a p-
ribbon CDF shall be called one-dimensional p-fuzzy rational 
GL-I: 

(35)  ;pfr pR
k kg F x x  , k=1, 2,…, q. 

  
Here  pR

kF x  is a one-dimensional p-ribbon CDF, 

whose lower and upper p-distributional bounds are  .pd
kF  

and  .pu
kF . The latter are defined similarly to (11)-(13). 
Calculating the Q-expected utility of the one-

dimensional p-fuzzy rational GL-I may be brought down to 
the following steps: 

1) Using a Q criterion under strict uncertainty, the 
one-dimensional p-ribbon CDF  pR

kF x  is piece-wise 
partially linearly approximated by a one-dimensional 
classical CDF  .pQ

kF  with nodes 

(36)       ,; | 1, 2, ,k Q k
i i kx F k z  ,   

where 
(37) 
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     , , ,d k Q k u k
i i iF F F  , k=2, 3,…, zk–1. 
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In that way the one-dimensional p-fuzzy rational GL-I 

is approximated by a one-dimensional classical risky GL-I, 
which shall be referred to as pQ-generalized (one-
dimensional pQ-GL-I), 
(39)  ;pQ pQ

k kg F x x  .   
2) The Q-expected utility of the one-dimensional p-

fuzzy rational GL-I is calculated as the expected utility of 
the one-dimensional pQ-GL-I using formula (17): 
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(40) 

Here the integral under the first summation symbol is 
a Riemann integral.  

The resulting Q-expected utility of the one-
dimensional p-fuzzy rational GL-I shall be called pQ-
expected utility. The application of some of the criteria 
under strict uncertainty essentially relies on the one-
dimensional utility function u(.) when approximating 

 .pR
kF  by  .pQ

kF . 
So, in the special case of one-dimensional p-fuzzy 

rational GL-I, calculating the pQ-expected utility of the i-th 
fuzzy rational GL-I is brought down to the estimation of the 

inner quantile indices  ,Q k
iF , i=2, 3,…, zk–1, of the 

classical CDF in the pQ-GL-I pQ
kg . The problem may be 

formalized as follows: 
General problem 
Given: 
– criterion under strict uncertainty Q; 
– one-dimensional utility function u(.); 
– number of approximating nodes zk >1; 

– quantiles  k
ix , k=1, 2,…, zk , such that 

(41)      
1 2 k

k k k
zx x x   ;    

– lower quantile index bounds  ,d k
iF , i=1, 2,…, zk , 

such that 
(42)        , , , ,

1 2 10 1
k k

d k d k d k d k
z zF F F F      ; 

– upper quantile index bounds  ,u k
iF , i=1, 2,…, zk, 

such that 
       , , , ,
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k k

u k u k u k u k
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– end quantile indices 
     , , ,

1 1 1 0Q k d k u kF F F   ,   (44) 
     , , , 1

k k k

Q k d k u k
z z zF F F   .   (45) 

Find:  

– inner quantile indices  ,Q k
iF , i=2, 3, …, zk–1, such 

that 
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     , , ,d k Q k u k
i i iF F F  .    (47) 

- the Q-expected utility ( | )pQ pR
k kE u F of the one-
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which shall be referred to as pQ-generalized (one-dimen-
sional pQ-GL-I),

2) The Q-expected utility of the one-dimensional 
p-fuzzy rational GL-I is calculated as the expected utility of 
the one-dimensional pQ-GL-I using formula (17):

 
(40)

Here the integral under the fi rst summation symbol is 
a Riemann integral. 

The resulting Q-expected utility of the one-dimension-
al p-fuzzy rational GL-I shall be called pQ-expected utility. 
The application of some of the criteria under strict uncer-
tainty essentially relies on the one-dimensional utility func-
tion u(.) when approximating Fk

pR (x) by Fk
pQ (x).

So, in the special case of one-dimensional p-fuzzy ra-
tional GL-I, calculating the pQ-expected utility of the i-th 
fuzzy rational GL-I is brought down to the estimation of the 
inner quantile indices Fi

Q,(k) (x) , i=2, 3,…, zk–1, of the clas-
sical CDF in the pQ-GL-I gk

pQ. The problem may be formal-
ized as follows:

General problem
Given:
– criterion under strict uncertainty Q;
– one-dimensional utility function u(.);
– number of approximating nodes zk >1;
– quantiles xi

(x), k=1, 2,…, zk, such that

– lower quantile index bounds Fi
d,(k), i=1, 2,…, zk , such 

that

– upper quantile index bounds Fi
u,(k), i=1, 2,…, zk, such 

that
(43)

(44)

(45)

Find: 
– inner quantile indices Fi

Q,(k), i=2, 3, …, zk–1, such 
that

(46)

(47)

– the Q-expected utility Ek
pQ(u|Fk

pR) of the one-dimen-
sional p-fuzzy rational GL-I gk

pQ.
We will provide three solutions of Problem 1 depend-

ing on the Q criterion.

3.2.2. Solution of the General Problem Using 
the Wald Criterion (Q=W)

The Wald decision criterion under strict uncertainty 
assumes that the worst outcome always occurs [Fabrycky 
et al., 1998]. The application of that concept in the case of a 
one-dimensional p-fuzzy rational GL-I implies to choose the 
quantile indices Fi

W,(k), i=2, 3, ..., zk–1, so that to minimize 
the pW-expected utility of the lottery given in (89). Let us 
introduce (zk–1) auxiliary variables:

(48)

The variables Ii
p,(k) are the mean utility in the closed in-

terval [xi
(k); xi+1

(k)] . That is why Ii
p,(k) can be referred to as the i-th 

mean utility. The integral in the fi rst line is a Riemann one.
The pW-expected utility of the k-th 1-D p-fuzzy ra-

tional GL-I would be rearranged as a constant plus a linear 
combination of the unknown quantile indices Fi

W,(k), using 
the mean utilities (48):
(49)

Formula (49) considers (44) and (45), i.e. that Fl
W,(k) =0 

and Fzk
W,(k)=1. 

So, the required quantile indices Fi
W,(k), i=2, 3, ..., zk –1, 

may be identifi ed by solving the following linear program-
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3.2.2. Problem Setup for Fuzzy-Rational GL-I 
with p-ribbon CDF 

A one-dimensional fuzzy rational GL-I with a p-
ribbon CDF shall be called one-dimensional p-fuzzy rational 
GL-I: 

(35)  ;pfr pR
k kg F x x  , k=1, 2,…, q. 

  
Here  pR

kF x  is a one-dimensional p-ribbon CDF, 

whose lower and upper p-distributional bounds are  .pd
kF  

and  .pu
kF . The latter are defined similarly to (11)-(13). 
Calculating the Q-expected utility of the one-

dimensional p-fuzzy rational GL-I may be brought down to 
the following steps: 

1) Using a Q criterion under strict uncertainty, the 
one-dimensional p-ribbon CDF  pR

kF x  is piece-wise 
partially linearly approximated by a one-dimensional 
classical CDF  .pQ

kF  with nodes 

(36)       ,; | 1, 2, ,k Q k
i i kx F k z  ,   

where 
(37) 
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Then 
(38) 
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In that way the one-dimensional p-fuzzy rational GL-I 

is approximated by a one-dimensional classical risky GL-I, 
which shall be referred to as pQ-generalized (one-
dimensional pQ-GL-I), 
(39)  ;pQ pQ

k kg F x x  .   
2) The Q-expected utility of the one-dimensional p-

fuzzy rational GL-I is calculated as the expected utility of 
the one-dimensional pQ-GL-I using formula (17): 
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(40) 

Here the integral under the first summation symbol is 
a Riemann integral.  

The resulting Q-expected utility of the one-
dimensional p-fuzzy rational GL-I shall be called pQ-
expected utility. The application of some of the criteria 
under strict uncertainty essentially relies on the one-
dimensional utility function u(.) when approximating 

 .pR
kF  by  .pQ

kF . 
So, in the special case of one-dimensional p-fuzzy 

rational GL-I, calculating the pQ-expected utility of the i-th 
fuzzy rational GL-I is brought down to the estimation of the 

inner quantile indices  ,Q k
iF , i=2, 3,…, zk–1, of the 

classical CDF in the pQ-GL-I pQ
kg . The problem may be 

formalized as follows: 
General problem 
Given: 
– criterion under strict uncertainty Q; 
– one-dimensional utility function u(.); 
– number of approximating nodes zk >1; 

– quantiles  k
ix , k=1, 2,…, zk , such that 

(41)      
1 2 k

k k k
zx x x   ;    

– lower quantile index bounds  ,d k
iF , i=1, 2,…, zk , 

such that 
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3.2.2. Problem Setup for Fuzzy-Rational GL-I 
with p-ribbon CDF 

A one-dimensional fuzzy rational GL-I with a p-
ribbon CDF shall be called one-dimensional p-fuzzy rational 
GL-I: 
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kF x  is a one-dimensional p-ribbon CDF, 

whose lower and upper p-distributional bounds are  .pd
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and  .pu
kF . The latter are defined similarly to (11)-(13). 
Calculating the Q-expected utility of the one-

dimensional p-fuzzy rational GL-I may be brought down to 
the following steps: 

1) Using a Q criterion under strict uncertainty, the 
one-dimensional p-ribbon CDF  pR
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partially linearly approximated by a one-dimensional 
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In that way the one-dimensional p-fuzzy rational GL-I 

is approximated by a one-dimensional classical risky GL-I, 
which shall be referred to as pQ-generalized (one-
dimensional pQ-GL-I), 
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Here the integral under the first summation symbol is 
a Riemann integral.  
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dimensional utility function u(.) when approximating 

 .pR
kF  by  .pQ

kF . 
So, in the special case of one-dimensional p-fuzzy 

rational GL-I, calculating the pQ-expected utility of the i-th 
fuzzy rational GL-I is brought down to the estimation of the 

inner quantile indices  ,Q k
iF , i=2, 3,…, zk–1, of the 

classical CDF in the pQ-GL-I pQ
kg . The problem may be 

formalized as follows: 
General problem 
Given: 
– criterion under strict uncertainty Q; 
– one-dimensional utility function u(.); 
– number of approximating nodes zk >1; 

– quantiles  k
ix , k=1, 2,…, zk , such that 

(41)      
1 2 k

k k k
zx x x   ;    

– lower quantile index bounds  ,d k
iF , i=1, 2,…, zk , 

such that 
(42)        , , , ,

1 2 10 1
k k

d k d k d k d k
z zF F F F      ; 

– upper quantile index bounds  ,u k
iF , i=1, 2,…, zk, 

such that 
       , , , ,

1 2 10 1
k k

u k u k u k u k
z zF F F F      ;  (43) 

– end quantile indices 
     , , ,

1 1 1 0Q k d k u kF F F   ,   (44) 
     , , , 1

k k k

Q k d k u k
z z zF F F   .   (45) 

Find:  

– inner quantile indices  ,Q k
iF , i=2, 3, …, zk–1, such 

that 
       , , , ,

2 3 2 1k k

Q k Q k Q k Q k
z zF F F F     ,   (46) 

     , , ,d k Q k u k
i i iF F F  .    (47) 

- the Q-expected utility ( | )pQ pR
k kE u F of the one-

information technologies 
and control 

 

 

3.2.2. Problem Setup for Fuzzy-Rational GL-I 
with p-ribbon CDF 

A one-dimensional fuzzy rational GL-I with a p-
ribbon CDF shall be called one-dimensional p-fuzzy rational 
GL-I: 

(35)  ;pfr pR
k kg F x x  , k=1, 2,…, q. 

  
Here  pR

kF x  is a one-dimensional p-ribbon CDF, 

whose lower and upper p-distributional bounds are  .pd
kF  

and  .pu
kF . The latter are defined similarly to (11)-(13). 
Calculating the Q-expected utility of the one-

dimensional p-fuzzy rational GL-I may be brought down to 
the following steps: 

1) Using a Q criterion under strict uncertainty, the 
one-dimensional p-ribbon CDF  pR

kF x  is piece-wise 
partially linearly approximated by a one-dimensional 
classical CDF  .pQ

kF  with nodes 

(36)       ,; | 1, 2, ,k Q k
i i kx F k z  ,   

where 
(37) 

     , , ,
1 20 ... 1

k

Q k Q k Q k
zF F F     , 

     , , ,d k Q k u k
i i iF F F  , k=2, 3,…, zk–1. 

Then 
(38) 

 
 

     

 

       
   

   

 

1

, 1

,

, , 1
1

1

=

0 for ,

for ,
=1, 2, ..., 1,

=
for ,
=1, 2, ..., 1,

1 for .
k

pR
k

k

k k
Q k i i

i
k

Q k
i

k k
k Q k Q k i i

i ii
k

k k
ii

k
z

F x

x x

x x xF
i z

F
x x x

x x F F
i z

x x

x x








 

  




 

    




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1 20 11 2F F F F1 20 11 2     1 20 11 2F F F F1 20 11 2 10 11F F F F10 11     10 11F F F F10 110 1u k u k u k u k0 1F F F F0 1u k u k u k u k0 1     0 1u k u k u k u k0 1F F F F0 1u k u k u k u k0 10 1u k u k u k u k0 1F F F F0 1u k u k u k u k0 1     0 1u k u k u k u k0 1F F F F0 1u k u k u k u k0 1 0 1u k u k u k u k0 1F F F F0 1u k u k u k u k0 1     0 1u k u k u k u k0 1F F F F0 1u k u k u k u k0 1 0 1u k u k u k u k0 1F F F F0 1u k u k u k u k0 1     0 1u k u k u k u k0 1F F F F0 1u k u k u k u k0 1 0 1u k u k u k u k0 1F F F F0 1u k u k u k u k0 1     0 1u k u k u k u k0 1F F F F0 1u k u k u k u k0 1 0 1u k u k u k u k0 1F F F F0 1u k u k u k u k0 1     0 1u k u k u k u k0 1F F F F0 1u k u k u k u k0 1 0 1u k u k u k u k0 1F F F F0 1u k u k u k u k0 1     0 1u k u k u k u k0 1F F F F0 1u k u k u k u k0 1, , , ,0 1, , , ,u k u k u k u k, , , ,0 1, , , ,F F F F, , , ,0 1, , , ,u k u k u k u k, , , ,0 1, , , ,     , , , ,0 1, , , ,u k u k u k u k, , , ,0 1, , , ,F F F F, , , ,0 1, , , ,u k u k u k u k, , , ,0 1, , , ,, , , ,0 1, , , ,u k u k u k u k, , , ,0 1, , , ,F F F F, , , ,0 1, , , ,u k u k u k u k, , , ,0 1, , , ,     , , , ,0 1, , , ,u k u k u k u k, , , ,0 1, , , ,F F F F, , , ,0 1, , , ,u k u k u k u k, , , ,0 1, , , , , , , ,0 1, , , ,u k u k u k u k, , , ,0 1, , , ,F F F F, , , ,0 1, , , ,u k u k u k u k, , , ,0 1, , , ,     , , , ,0 1, , , ,u k u k u k u k, , , ,0 1, , , ,F F F F, , , ,0 1, , , ,u k u k u k u k, , , ,0 1, , , , , , , ,0 1, , , ,u k u k u k u k, , , ,0 1, , , ,F F F F, , , ,0 1, , , ,u k u k u k u k, , , ,0 1, , , ,     , , , ,0 1, , , ,u k u k u k u k, , , ,0 1, , , ,F F F F, , , ,0 1, , , ,u k u k u k u k, , , ,0 1, , , , , , , ,0 1, , , ,u k u k u k u k, , , ,0 1, , , ,F F F F, , , ,0 1, , , ,u k u k u k u k, , , ,0 1, , , ,     , , , ,0 1, , , ,u k u k u k u k, , , ,0 1, , , ,F F F F, , , ,0 1, , , ,u k u k u k u k, , , ,0 1, , , , , , , ,0 1, , , ,u k u k u k u k, , , ,0 1, , , ,F F F F, , , ,0 1, , , ,u k u k u k u k, , , ,0 1, , , ,     , , , ,0 1, , , ,u k u k u k u k, , , ,0 1, , , ,F F F F, , , ,0 1, , , ,u k u k u k u k, , , ,0 1, , , , , , , ,0 1, , , ,u k u k u k u k, , , ,0 1, , , ,F F F F, , , ,0 1, , , ,u k u k u k u k, , , ,0 1, , , ,     , , , ,0 1, , , ,u k u k u k u k, , , ,0 1, , , ,F F F F, , , ,0 1, , , ,u k u k u k u k, , , ,0 1, , , ,0 10 10 1F F F F0 1     0 1F F F F0 10 1F F F F0 1     0 1F F F F0 1;  (43) 

– end quantile indices 
     

1 1 1 0Q k d k u kQ k d k u k Q k d k u k Q k d k u k Q k d k u k Q k d k u k, , ,Q k d k u k, , ,F F FF F F F F F F F F F F F
1 1 1F F F1 1 1
Q k d k u kF F FQ k d k u kQ k d k u kF F FQ k d k u k Q k d k u kF F FQ k d k u k Q k d k u kF F FQ k d k u k Q k d k u kF F FQ k d k u k, , ,Q k d k u k, , ,F F F, , ,Q k d k u k, , ,, , ,Q k d k u k, , ,F F F, , ,Q k d k u k, , , , , ,Q k d k u k, , ,F F F, , ,Q k d k u k, , , , , ,Q k d k u k, , ,F F F, , ,Q k d k u k, , , , , ,Q k d k u k, , ,F F F, , ,Q k d k u k, , ,       1 1 1  1 1 1F F F  F F FF F F  F F F F F F  F F F

1 1 1F F F1 1 1  1 1 1F F F1 1 1 ,   (44) 
      1

k k k

Q k d k u kQ k d k u k Q k d k u k Q k d k u k Q k d k u k Q k d k u k, , ,Q k d k u k, , ,
z z zk k kz z zk k k

F F FF F FF F FF F F F F F F F FQ k d k u kF F FQ k d k u kQ k d k u kF F FQ k d k u kQ k d k u kF F FQ k d k u kQ k d k u kF F FQ k d k u k Q k d k u kF F FQ k d k u k Q k d k u kF F FQ k d k u k, , ,Q k d k u k, , ,F F F, , ,Q k d k u k, , ,, , ,Q k d k u k, , ,F F F, , ,Q k d k u k, , , , , ,Q k d k u k, , ,F F F, , ,Q k d k u k, , , , , ,Q k d k u k, , ,F F F, , ,Q k d k u k, , , , , ,Q k d k u k, , ,F F F, , ,Q k d k u k, , ,       F F F  F F FF F F  F F F F F F  F F F .   (45) 

       
2 3 2 1k k2 1k k2 1
Q k Q k Q k Q kQ k Q k Q k Q k Q k Q k Q k Q k Q k Q k Q k Q k Q k Q k Q k Q k Q k Q k Q k Q k Q k Q k Q k Q k Q k Q k Q k Q k, , , ,Q k Q k Q k Q k, , , ,

z z2 1z z2 1k kz zk k2 1k k2 1z z2 1k k2 1F F F FF F F F F F F FF F F F2 3F F F F2 3 2 1F F F F2 1
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     d k Q k u kd k Q k u k d k Q k u k d k Q k u k d k Q k u k d k Q k u k, , ,d k Q k u k, , ,
i i iF F FF F F F F FF F Fd k Q k u kF F Fd k Q k u kd k Q k u kF F Fd k Q k u k d k Q k u kF F Fd k Q k u k d k Q k u kF F Fd k Q k u k d k Q k u kF F Fd k Q k u kd k Q k u kF F Fd k Q k u k, , ,d k Q k u k, , ,F F F, , ,d k Q k u k, , ,, , ,d k Q k u k, , ,F F F, , ,d k Q k u k, , , , , ,d k Q k u k, , ,F F F, , ,d k Q k u k, , ,
i i iF F Fi i iF F F F F FF F F F F F F F F F F Fd k Q k u kF F Fd k Q k u k d k Q k u kF F Fd k Q k u kd k Q k u kF F Fd k Q k u k d k Q k u kF F Fd k Q k u k d k Q k u kF F Fd k Q k u k d k Q k u kF F Fd k Q k u kd k Q k u kF F Fd k Q k u k d k Q k u kF F Fd k Q k u kd k Q k u kF F Fd k Q k u k d k Q k u kF F Fd k Q k u k d k Q k u kF F Fd k Q k u k d k Q k u kF F Fd k Q k u k, , ,d k Q k u k, , ,F F F, , ,d k Q k u k, , , , , ,d k Q k u k, , ,F F F, , ,d k Q k u k, , ,, , ,d k Q k u k, , ,F F F, , ,d k Q k u k, , , , , ,d k Q k u k, , ,F F F, , ,d k Q k u k, , , , , ,d k Q k u k, , ,F F F, , ,d k Q k u k, , , , , ,d k Q k u k, , ,F F F, , ,d k Q k u k, , ,
i i iF F Fi i i i i iF F Fi i i .    (47) 
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3.2.2. Problem Setup for Fuzzy-Rational GL-I 
with p-ribbon CDF 

A one-dimensional fuzzy rational GL-I with a p-
ribbon CDF shall be called one-dimensional p-fuzzy rational 
GL-I: 

(35)  ;pfr pR
k kg F x x  , k=1, 2,…, q. 

  
Here  pR

kF x  is a one-dimensional p-ribbon CDF, 

whose lower and upper p-distributional bounds are  .pd
kF  

and  .pu
kF . The latter are defined similarly to (11)-(13). 
Calculating the Q-expected utility of the one-

dimensional p-fuzzy rational GL-I may be brought down to 
the following steps: 

1) Using a Q criterion under strict uncertainty, the 
one-dimensional p-ribbon CDF  pR

kF x  is piece-wise 
partially linearly approximated by a one-dimensional 
classical CDF  .pQ

kF  with nodes 

(36)       ,; | 1, 2, ,k Q k
i i kx F k z  ,   

where 
(37) 

     , , ,
1 20 ... 1

k

Q k Q k Q k
zF F F     , 

     , , ,d k Q k u k
i i iF F F  , k=2, 3,…, zk–1. 
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In that way the one-dimensional p-fuzzy rational GL-I 

is approximated by a one-dimensional classical risky GL-I, 
which shall be referred to as pQ-generalized (one-
dimensional pQ-GL-I), 
(39)  ;pQ pQ

k kg F x x  .   
2) The Q-expected utility of the one-dimensional p-

fuzzy rational GL-I is calculated as the expected utility of 
the one-dimensional pQ-GL-I using formula (17): 

   
 

 
   

     
 

 

       
 

1

1 1

1

1 , ,
1

=1 1

1
, ,
1

1

( | )=

= =

.

k k
zk ik

k k
i

k k

k

k
i i

pQ pR
k k

x xz Q k Q k
pQ ii

k k k
i iix xx x

z
Q k Q k k

i ii
i

x x

E u F

F F
u x dF x u x dx

x x

F F u x
























 

 



(40) 

Here the integral under the first summation symbol is 
a Riemann integral.  

The resulting Q-expected utility of the one-
dimensional p-fuzzy rational GL-I shall be called pQ-
expected utility. The application of some of the criteria 
under strict uncertainty essentially relies on the one-
dimensional utility function u(.) when approximating 

 .pR
kF  by  .pQ

kF . 
So, in the special case of one-dimensional p-fuzzy 

rational GL-I, calculating the pQ-expected utility of the i-th 
fuzzy rational GL-I is brought down to the estimation of the 

inner quantile indices  ,Q k
iF , i=2, 3,…, zk–1, of the 

classical CDF in the pQ-GL-I pQ
kg . The problem may be 

formalized as follows: 
General problem 
Given: 
– criterion under strict uncertainty Q; 
– one-dimensional utility function u(.); 
– number of approximating nodes zk >1; 

– quantiles  k
ix , k=1, 2,…, zk , such that 

(41)      
1 2 k

k k k
zx x x   ;    

– lower quantile index bounds  ,d k
iF , i=1, 2,…, zk , 

such that 
(42)        , , , ,

1 2 10 1
k k

d k d k d k d k
z zF F F F      ; 

– upper quantile index bounds  ,u k
iF , i=1, 2,…, zk, 

such that 
       , , , ,

1 2 10 1
k k

u k u k u k u k
z zF F F F      ;  (43) 

– end quantile indices 
     , , ,

1 1 1 0Q k d k u kF F F   ,   (44) 
     , , , 1

k k k

Q k d k u k
z z zF F F   .   (45) 

Find:  

– inner quantile indices  ,Q k
iF , i=2, 3, …, zk–1, such 

that 
       , , , ,

2 3 2 1k k

Q k Q k Q k Q k
z zF F F F     ,   (46) 

     , , ,d k Q k u k
i i iF F F  .    (47) 

- the Q-expected utility ( | )pQ pR
k kE u F of the one-

information technologies 
and control 
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depending on the Q criterion. 
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The Wald decision criterion under strict uncertainty 
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al., 1998]. The application of that concept in the case of a 
one-dimensional p-fuzzy rational GL-I implies to choose the 
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the pW-expected utility of the lottery given in (89). Let us 
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The variables  ,p k
iI  are the mean utility in the closed 

interval    
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 
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. That is why  ,p k
iI  can be referred to as 

the i-th mean utility. The integral in the first line is a 
Riemann one. 

The pW-expected utility of the k-th 1-D p-fuzzy 
rational GL-I would be rearranged as a constant plus a linear 

combination of the unknown quantile indices  ,W k
iF , using 

the mean utilities (48): 
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Formula (49) considers (44) and (45), i.e. that 

 ,
1 0W kF   and  , 1

k

W k
zF  .  

So, the required quantile indices  ,W k
iF , i=2, 3, ..., zk–

1, may be identified by solving the following linear 
programming (LP) problem in canonical form: minimize the 
linear function 

      
1

, , ,
1

=2

kz
W k p k p k
i ii

i

F I I


   on      , , ,
2 3 1, ,...,

k

W k W k W k
zF F F   (50) 

provided the following 3zk–5 linear constraints hold: 
   , , 0d k W k

i iF F  , i=2, 3, ..., zk–1, 
   , , 0W k u k

i iF F  , i=2, 3, ..., zk–1, 
   , ,

1 0W k W k
i iF F  , i=2, 3, ..., zk–2, 

 ,
2 0W kF  , 
 ,
1 1 0

k

W k
zF    . 

(51) 

 
        We propose to solve the formulated LP problem (50)-
(51) utilizing resources from MATLAB, i.e. the function 
linprog [The MathWorks, 2018] (refer to the Conclusion 
section for more detail on the use of Matlab in this study). 
The linprog function uses the Dual-Simplex Algorithm 
[Koberstein, 2008; Nocedal, Wright, 2006] to solve the LP 
task. 
After finding the inner quantiles, the W-expected utility may 
be easily calculated using (49): 

        
1

, , , ,
11

2

( | )=
k

k

z
p k W k p k p kpW pR

i iik k z
i

E u F I F I I





     (52) 

          So, the General Problem stated can be universally 
solved using the Wald criterion using the following 
algorithm:  
         Universal Algorithm for finding the Wald-
Expected utility of a 1D p-fuzzy rational GL-I 

1)         Calculate the mean utilities  ,p k
iI for i=1, 2,…, zk-1 

using (48) by numerically integrating the Riemann integral 
in the upper line. 

2) Solve the LP problem (50) under the linear constraints (51) 

and find the inner quantile indices  ,W k
iF , i=2, 3, ..., zk–1 of 

the piece-wise partially linearly approximated classical CDF
 .pW

kF . 
3)           Calculate the Wald-expected utility of the 1D p-fuzzy 

rational GL-I using (52) 
The Universal Algorithm under Wald can be 

simplified in some special cases depending on the utility 
function. 

 
3.2.3.1. Partially Linear-Interpolated Non-
Monotonic Utility under Wald Criterion 
(Q=W) 

Let the utility (19) be non-monotonic and partially 
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Formula (49) considers (44) and (45), i.e. that 

 ,
1 0W kF   and  , 1

k

W k
zF  .  

So, the required quantile indices  ,W k
iF , i=2, 3, ..., zk–

1, may be identified by solving the following linear 
programming (LP) problem in canonical form: minimize the 
linear function 
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
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2 3 1, ,...,
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W k W k W k
zF F F   (50) 

provided the following 3zk–5 linear constraints hold: 
   , , 0d k W k

i iF F  , i=2, 3, ..., zk–1, 
   , , 0W k u k

i iF F  , i=2, 3, ..., zk–1, 
   , ,

1 0W k W k
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 ,
2 0W kF  , 
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1 1 0

k
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zF    . 
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        We propose to solve the formulated LP problem (50)-
(51) utilizing resources from MATLAB, i.e. the function 
linprog [The MathWorks, 2018] (refer to the Conclusion 
section for more detail on the use of Matlab in this study). 
The linprog function uses the Dual-Simplex Algorithm 
[Koberstein, 2008; Nocedal, Wright, 2006] to solve the LP 
task. 
After finding the inner quantiles, the W-expected utility may 
be easily calculated using (49): 
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          So, the General Problem stated can be universally 
solved using the Wald criterion using the following 
algorithm:  
         Universal Algorithm for finding the Wald-
Expected utility of a 1D p-fuzzy rational GL-I 

1)         Calculate the mean utilities  ,p k
iI for i=1, 2,…, zk-1 

using (48) by numerically integrating the Riemann integral 
in the upper line. 

2) Solve the LP problem (50) under the linear constraints (51) 

and find the inner quantile indices  ,W k
iF , i=2, 3, ..., zk–1 of 

the piece-wise partially linearly approximated classical CDF
 .pW

kF . 
3)           Calculate the Wald-expected utility of the 1D p-fuzzy 

rational GL-I using (52) 
The Universal Algorithm under Wald can be 

simplified in some special cases depending on the utility 
function. 

 
3.2.3.1. Partially Linear-Interpolated Non-
Monotonic Utility under Wald Criterion 
(Q=W) 

Let the utility (19) be non-monotonic and partially 
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ming (LP) problem in canonical form: minimize the linear 
function

(50)

provided the following 3zk–5 linear constraints hold:

(51)

We propose to solve the formulated LP problem (50)-
(51) utilizing resources from MATLAB, i.e. the function 
linprog [The MathWorks, 2018] (refer to the Conclusion 
section for more detail on the use of Matlab in this study). 
The linprog function uses the Dual-Simplex Algorithm [Ko-
berstein, 2008; Nocedal, Wright, 2006] to solve the LP task.

After fi nding the inner quantiles, the W-expected utili-
ty may be easily calculated using (49):

(52)

So, the General Problem stated can be universally 
solved using the Wald criterion using the following algo-
rithm: 

Universal Algorithm for fi nding the Wald-Expected 
utility of a 1D p-fuzzy rational GL-I

1) Calculate the mean utilities Ii
p,(k) for i=1, 2,…, zk-1 

using (48) by numerically integrating the Riemann integral 
in the upper line.

2) Solve the LP problem (50) under the linear con-
straints (51) and fi nd the inner quantile indices Fi

W,(k), i=2, 
3, ..., zk–1 of the piece-wise partially linearly approximated 
classical CDF Fk

pW.
3) Calculate the Wald-expected utility of the 1D 

p-fuzzy rational GL-I using (52)
The Universal Algorithm under Wald can be simplifi ed 

in some special cases depending on the utility function.

3.2.3.1. Partially Linear-Interpolated Non-Mono-
tonic Utility under Wald Criterion (Q=W)

Let the utility (19) be non-monotonic and partially lin-
ear-interpolated on the nodes (18). Then the integral in (49) 
can be easily calculated using the approximation (20). Let 
ibeg and iend are such indices that:

(53)

Then the mean utilities (50) can be found in close form 
by

(54)

So, in the special case of partially linear-interpolated 
utility the General Problem in 3.2.2 can be solved using the 
Wald criterion utilizing the following simplifi cation of the 
Universal Algorithm:

Simplifi ed Algorithm 1
1) Create the z(k)g triplets (xi

(k)g; Fi
(k)g ; ui

(k)g) leaving the   
Fi

(k)g unknown.
2) Calculate the mean utilities Ii

p,(k)  for i=1, 2,…, zk-1 
using (53) and (54).

3) Solve the LP problem (50) under the linear con-
straints (51) and fi nd the inner quantile indices Fi

W,(k) , i=2, 
3, ..., zk–1 of the piece-wise partially linearly approximated 
classical CDF Fk

pW .
4) Calculate the Wald-expected utility of the 1D 

p-fuzzy rational GL-I using (52).

3.2.3.2. Increasing Mean Utilities under Wald Cri-
terion (Q=W)

Let the mean utilities be increasing for gk
pfr:

(55)

Condition (55) is often fulfi lled, e.g. when the utili-
ty function u(.) is monotonically increasing in the interval
[xl

(k); xzk
(k)] so that for xa ϵ [xl

(k); xzk
(k)] and xb ϵ [xl

(k); xzk
(k)] 

(56)  if xa > xb, then u(xa) ≥ u(xb).

Since the coeffi  cients of the linear function

are entirely non-positive, then 

the minimum would be identifi ed only for the greatest values 
of the unknown variables that obey the linear constraints, i.e. 
(57)

So, in the special case of increasing mean utilities the 
General Problem in 3.2.2 can be solved using the Wald cri-
terion utilizing the following simplifi cation of the Universal 
Algorithm:

Simplifi ed Algorithm 2
1) Calculate the mean utilities Ii

p,(k) for i=1, 2,…, zk-1 
using (48) by numerically integrating the Riemann integral 
in the upper line.

2) Confi rm the condition (55) and use (57) to fi nd the 
inner quantile indices Fi

W,(k), i=2, 3, ..., zk–1 of the piece-wise 
partially linearly interpolated classical CDF Fk

pW.
3) Calculate the Wald-expected utility of the 1D 

p-fuzzy rational GL-I using (52).
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Formula (49) considers (44) and (45), i.e. that 

 ,
1 0W kF   and  , 1

k

W k
zF  .  

So, the required quantile indices  ,W k
iF , i=2, 3, ..., zk–

1, may be identified by solving the following linear 
programming (LP) problem in canonical form: minimize the 
linear function 

      
1

, , ,
1

=2

kz
W k p k p k
i ii

i

F I I


   on      , , ,
2 3 1, ,...,

k

W k W k W k
zF F F   (50) 

provided the following 3zk–5 linear constraints hold: 
   , , 0d k W k

i iF F  , i=2, 3, ..., zk–1, 
   , , 0W k u k

i iF F  , i=2, 3, ..., zk–1, 
   , ,

1 0W k W k
i iF F  , i=2, 3, ..., zk–2, 

 ,
2 0W kF  , 
 ,
1 1 0

k

W k
zF    . 

(51) 

 
        We propose to solve the formulated LP problem (50)-
(51) utilizing resources from MATLAB, i.e. the function 
linprog [The MathWorks, 2018] (refer to the Conclusion 
section for more detail on the use of Matlab in this study). 
The linprog function uses the Dual-Simplex Algorithm 
[Koberstein, 2008; Nocedal, Wright, 2006] to solve the LP 
task. 
After finding the inner quantiles, the W-expected utility may 
be easily calculated using (49): 
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          So, the General Problem stated can be universally 
solved using the Wald criterion using the following 
algorithm:  
         Universal Algorithm for finding the Wald-
Expected utility of a 1D p-fuzzy rational GL-I 

1)         Calculate the mean utilities  ,p k
iI for i=1, 2,…, zk-1 

using (48) by numerically integrating the Riemann integral 
in the upper line. 

2) Solve the LP problem (50) under the linear constraints (51) 

and find the inner quantile indices  ,W k
iF , i=2, 3, ..., zk–1 of 

the piece-wise partially linearly approximated classical CDF
 .pW

kF . 
3)           Calculate the Wald-expected utility of the 1D p-fuzzy 

rational GL-I using (52) 
The Universal Algorithm under Wald can be 

simplified in some special cases depending on the utility 
function. 

 
3.2.3.1. Partially Linear-Interpolated Non-
Monotonic Utility under Wald Criterion 
(Q=W) 

Let the utility (19) be non-monotonic and partially 
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dimensional p-fuzzy rational GL-I pQ
kg .  

We will provide three solutions of Problem 1 
depending on the Q criterion. 

 
3.2.2. Solution of the General Problem Using 
the Wald Criterion (Q=W) 

The Wald decision criterion under strict uncertainty 
assumes that the worst outcome always occurs [Fabrycky et 
al., 1998]. The application of that concept in the case of a 
one-dimensional p-fuzzy rational GL-I implies to choose the 

quantile indices  ,W k
iF , i=2, 3, ..., zk–1, so that to minimize 

the pW-expected utility of the lottery given in (89). Let us 
introduce (zk–1) auxiliary variables: 
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  for i=1,2, 3,…, zk–1, (48) 

The variables  ,p k
iI  are the mean utility in the closed 

interval    
1;k k

i ix x 
 
  

. That is why  ,p k
iI  can be referred to as 

the i-th mean utility. The integral in the first line is a 
Riemann one. 

The pW-expected utility of the k-th 1-D p-fuzzy 
rational GL-I would be rearranged as a constant plus a linear 

combination of the unknown quantile indices  ,W k
iF , using 

the mean utilities (48): 
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Formula (49) considers (44) and (45), i.e. that 

 ,
1 0W kF   and  , 1

k

W k
zF  .  

So, the required quantile indices  ,W k
iF , i=2, 3, ..., zk–

1, may be identified by solving the following linear 
programming (LP) problem in canonical form: minimize the 
linear function 

      
1
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

   on      , , ,
2 3 1, ,...,
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W k W k W k
zF F F   (50) 

provided the following 3zk–5 linear constraints hold: 
   , , 0d k W k

i iF F  , i=2, 3, ..., zk–1, 
   , , 0W k u k

i iF F  , i=2, 3, ..., zk–1, 
   , ,

1 0W k W k
i iF F  , i=2, 3, ..., zk–2, 

 ,
2 0W kF  , 
 ,
1 1 0

k

W k
zF    . 

(51) 

 
        We propose to solve the formulated LP problem (50)-
(51) utilizing resources from MATLAB, i.e. the function 
linprog [The MathWorks, 2018] (refer to the Conclusion 
section for more detail on the use of Matlab in this study). 
The linprog function uses the Dual-Simplex Algorithm 
[Koberstein, 2008; Nocedal, Wright, 2006] to solve the LP 
task. 
After finding the inner quantiles, the W-expected utility may 
be easily calculated using (49): 
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          So, the General Problem stated can be universally 
solved using the Wald criterion using the following 
algorithm:  
         Universal Algorithm for finding the Wald-
Expected utility of a 1D p-fuzzy rational GL-I 

1)         Calculate the mean utilities  ,p k
iI for i=1, 2,…, zk-1 

using (48) by numerically integrating the Riemann integral 
in the upper line. 

2) Solve the LP problem (50) under the linear constraints (51) 

and find the inner quantile indices  ,W k
iF , i=2, 3, ..., zk–1 of 

the piece-wise partially linearly approximated classical CDF
 .pW

kF . 
3)           Calculate the Wald-expected utility of the 1D p-fuzzy 

rational GL-I using (52) 
The Universal Algorithm under Wald can be 

simplified in some special cases depending on the utility 
function. 

 
3.2.3.1. Partially Linear-Interpolated Non-
Monotonic Utility under Wald Criterion 
(Q=W) 

Let the utility (19) be non-monotonic and partially 
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dimensional p-fuzzy rational GL-I pQ
kg .  

We will provide three solutions of Problem 1 
depending on the Q criterion. 

 
3.2.2. Solution of the General Problem Using 
the Wald Criterion (Q=W) 

The Wald decision criterion under strict uncertainty 
assumes that the worst outcome always occurs [Fabrycky et 
al., 1998]. The application of that concept in the case of a 
one-dimensional p-fuzzy rational GL-I implies to choose the 

quantile indices  ,W k
iF , i=2, 3, ..., zk–1, so that to minimize 

the pW-expected utility of the lottery given in (89). Let us 
introduce (zk–1) auxiliary variables: 
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  for i=1,2, 3,…, zk–1, (48) 

The variables  ,p k
iI  are the mean utility in the closed 

interval    
1;k k

i ix x 
 
  

. That is why  ,p k
iI  can be referred to as 

the i-th mean utility. The integral in the first line is a 
Riemann one. 

The pW-expected utility of the k-th 1-D p-fuzzy 
rational GL-I would be rearranged as a constant plus a linear 

combination of the unknown quantile indices  ,W k
iF , using 

the mean utilities (48): 
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Formula (49) considers (44) and (45), i.e. that 

 ,
1 0W kF   and  , 1

k

W k
zF  .  

So, the required quantile indices  ,W k
iF , i=2, 3, ..., zk–

1, may be identified by solving the following linear 
programming (LP) problem in canonical form: minimize the 
linear function 

      
1

, , ,
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W k p k p k
i ii

i

F I I


   on      , , ,
2 3 1, ,...,

k

W k W k W k
zF F F   (50) 

provided the following 3zk–5 linear constraints hold: 
   , , 0d k W k

i iF F  , i=2, 3, ..., zk–1, 
   , , 0W k u k

i iF F  , i=2, 3, ..., zk–1, 
   , ,

1 0W k W k
i iF F  , i=2, 3, ..., zk–2, 

 ,
2 0W kF  , 
 ,
1 1 0

k

W k
zF    . 

(51) 

 
        We propose to solve the formulated LP problem (50)-
(51) utilizing resources from MATLAB, i.e. the function 
linprog [The MathWorks, 2018] (refer to the Conclusion 
section for more detail on the use of Matlab in this study). 
The linprog function uses the Dual-Simplex Algorithm 
[Koberstein, 2008; Nocedal, Wright, 2006] to solve the LP 
task. 
After finding the inner quantiles, the W-expected utility may 
be easily calculated using (49): 
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          So, the General Problem stated can be universally 
solved using the Wald criterion using the following 
algorithm:  
         Universal Algorithm for finding the Wald-
Expected utility of a 1D p-fuzzy rational GL-I 

1)         Calculate the mean utilities  ,p k
iI for i=1, 2,…, zk-1 

using (48) by numerically integrating the Riemann integral 
in the upper line. 

2) Solve the LP problem (50) under the linear constraints (51) 

and find the inner quantile indices  ,W k
iF , i=2, 3, ..., zk–1 of 

the piece-wise partially linearly approximated classical CDF
 .pW

kF . 
3)           Calculate the Wald-expected utility of the 1D p-fuzzy 

rational GL-I using (52) 
The Universal Algorithm under Wald can be 

simplified in some special cases depending on the utility 
function. 

 
3.2.3.1. Partially Linear-Interpolated Non-
Monotonic Utility under Wald Criterion 
(Q=W) 

Let the utility (19) be non-monotonic and partially 
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linear-interpolated on the nodes (18). Then the integral in 
(49) can be easily calculated using the approximation (20). 
Let ibeg and iend are such indices that: 

       
1 and 

beg end

k g k k g k
i ii ix x x x          (53) 

Then the mean utilities (50) can be found in close 
form by 

 

    
         

   

     

,

1

11

1 1

1

1

2
for ,

( ) for .

end

beg

p k
i

k k
ii k k

iii
k g k g k g k g

i ii i
i i

k k k
i ii

I

x x
x x

x x u u

u x x x





 






 


  
  






 (54) 

So, in the special case of partially linear-interpolated 
utility the General Problem in 3.2.2 can be solved using the 
Wald criterion utilizing the following simplification of the 
Universal Algorithm: 

Simplified Algorithm 1 

1) Create the z(k)g triplets       ; ;k g k g k g
i i ix F u  leaving the 

 k g
iF  unknown. 

2) Calculate the mean utilities  ,p k
iI for i=1, 2,…, zk-1 using 

(53) and (54). 
3) Solve the LP problem (50) under the linear constraints (51) 

and find the inner quantile indices  ,W k
iF , i=2, 3, ..., zk–1 of 

the piece-wise partially linearly approximated classical CDF
 .pW

kF . 
4) Calculate the Wald-expected utility of the 1D p-fuzzy 

rational GL-I using (52). 
 
3.2.3.2. Increasing Mean Utilities under Wald 
Criterion (Q=W) 

Let the mean utilities be increasing for pfr
kg : 

   , ,
-1
p k p k

iiI I , i=2, 3, ..., zk–1.  (55) 
Condition (55) is often fulfilled, e.g. when the utility 

function u(.) is monotonically increasing in the interval 
   
1 ; 

k

k k
zx x 

  
 so that for    

1 ; 
k

k k
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 and 

   
1 ; 

k

k k
b zx x x    

 

if xa > xb, then u(xa)  u(xb).   (56) 
Since the coefficients of the linear function 

      
1

, , ,
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kz
W k p k p k
i ii

i

F I I


  are entirely non-positive, then 

the minimum would be identified only for the greatest 
values of the unknown variables that obey the linear 
constraints, i.e.  

   , ,W k u k
k kF F , i=2, 3, ..., zk–1.  (57) 

So, in the special case of increasing mean utilities the 
General Problem in 3.2.2 can be solved using the Wald 
criterion utilizing the following simplification of the 
Universal Algorithm: 

 
 
Simplified Algorithm 2 

1) Calculate the mean utilities  ,p k
iI for i=1, 2,…, zk-1 using 

(48) by numerically integrating the Riemann integral in the 
upper line. 

2)         Confirm the condition (55) and use (57) to find the 

inner quantile indices  ,W k
iF , i=2, 3, ..., zk–1 of the piece-

wise partially linearly interpolated classical CDF  .pW
kF . 

3)         Calculate the Wald-expected utility of the 1D p-fuzzy 
rational GL-I using (52). 

4)  
3.2.3.3. Decreasing Mean Utilities under Wald 
Criterion (Q=W) 

Let the mean utilities be decreasing for pfr
kg : 

   , ,
-1
p k p k

iiI I , i=2, 3, ..., zk–1.    (58) 
Condition (58) is often fulfilled, e.g. when the utility 

function u(.) is monotonically decreasing in the interval 
   
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k
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zx x 

  
 so that for    

1 ; 
k

k k
a zx x x    

 and 

   
1 ; 

k

k k
b zx x x    

 

if xa > xb, then u(xa)   u(xb).   (59) 
Since the coefficients of the linear function 

      
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W k p k p k
i ii

i

F I I


  are entirely non-negative, then 

the minimum would be identified only for the smallest 
values of the unknown variables that obey the linear 
constraints, i.e. 

   , ,W k d k
k kF F , i=2, 3, ..., zk–1.   (60) 

So, in the special case of decreasing mean utilities the 
General Problem in 3.2.2 can be solved using the Wald 
criterion utilising the following simplification of the 
Universal Algorithm: 

 
Simplified Algorithm 3 

1)          Calculate the mean utilities  ,p k
iI for i=1, 2,…, zk-1 

using (48) by numerically integrating the Riemann integral 
in the upper line. 

2)         Confirm the condition (58) and use (60) to find the 

inner quantile indices  ,W k
iF , i=2, 3, ..., zk–1 of the piece-

wise partially linearly interpolated classical CDF  .pW
kF . 

3)         Calculate the Wald-expected utility of the 1D p-fuzzy 
rational GL-I using (52). 
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linear-interpolated on the nodes (18). Then the integral in 
(49) can be easily calculated using the approximation (20). 
Let ibeg and iend are such indices that: 

       
1 and 

beg end

k g k k g k
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Then the mean utilities (50) can be found in close 
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So, in the special case of partially linear-interpolated 
utility the General Problem in 3.2.2 can be solved using the 
Wald criterion utilizing the following simplification of the 
Universal Algorithm: 

Simplified Algorithm 1 

1) Create the z(k)g triplets       ; ;k g k g k g
i i ix F u  leaving the 

 k g
iF  unknown. 

2) Calculate the mean utilities  ,p k
iI for i=1, 2,…, zk-1 using 

(53) and (54). 
3) Solve the LP problem (50) under the linear constraints (51) 

and find the inner quantile indices  ,W k
iF , i=2, 3, ..., zk–1 of 

the piece-wise partially linearly approximated classical CDF
 .pW

kF . 
4) Calculate the Wald-expected utility of the 1D p-fuzzy 

rational GL-I using (52). 
 
3.2.3.2. Increasing Mean Utilities under Wald 
Criterion (Q=W) 

Let the mean utilities be increasing for pfr
kg : 

   , ,
-1
p k p k

iiI I , i=2, 3, ..., zk–1.  (55) 
Condition (55) is often fulfilled, e.g. when the utility 

function u(.) is monotonically increasing in the interval 
   
1 ; 

k

k k
zx x 

  
 so that for    

1 ; 
k

k k
a zx x x    

 and 

   
1 ; 

k

k k
b zx x x    

 

if xa > xb, then u(xa)  u(xb).   (56) 
Since the coefficients of the linear function 

      
1

, , ,
-1

=2

kz
W k p k p k
i ii

i

F I I


  are entirely non-positive, then 

the minimum would be identified only for the greatest 
values of the unknown variables that obey the linear 
constraints, i.e.  

   , ,W k u k
k kF F , i=2, 3, ..., zk–1.  (57) 

So, in the special case of increasing mean utilities the 
General Problem in 3.2.2 can be solved using the Wald 
criterion utilizing the following simplification of the 
Universal Algorithm: 

 
 
Simplified Algorithm 2 

1) Calculate the mean utilities  ,p k
iI for i=1, 2,…, zk-1 using 

(48) by numerically integrating the Riemann integral in the 
upper line. 

2)         Confirm the condition (55) and use (57) to find the 

inner quantile indices  ,W k
iF , i=2, 3, ..., zk–1 of the piece-

wise partially linearly interpolated classical CDF  .pW
kF . 

3)         Calculate the Wald-expected utility of the 1D p-fuzzy 
rational GL-I using (52). 

4)  
3.2.3.3. Decreasing Mean Utilities under Wald 
Criterion (Q=W) 

Let the mean utilities be decreasing for pfr
kg : 

   , ,
-1
p k p k

iiI I , i=2, 3, ..., zk–1.    (58) 
Condition (58) is often fulfilled, e.g. when the utility 

function u(.) is monotonically decreasing in the interval 
   
1 ; 

k

k k
zx x 

  
 so that for    

1 ; 
k

k k
a zx x x    

 and 

   
1 ; 

k

k k
b zx x x    

 

if xa > xb, then u(xa)   u(xb).   (59) 
Since the coefficients of the linear function 

      
1

, , ,
-1

=2

kz
W k p k p k
i ii

i

F I I


  are entirely non-negative, then 

the minimum would be identified only for the smallest 
values of the unknown variables that obey the linear 
constraints, i.e. 

   , ,W k d k
k kF F , i=2, 3, ..., zk–1.   (60) 

So, in the special case of decreasing mean utilities the 
General Problem in 3.2.2 can be solved using the Wald 
criterion utilising the following simplification of the 
Universal Algorithm: 

 
Simplified Algorithm 3 

1)          Calculate the mean utilities  ,p k
iI for i=1, 2,…, zk-1 

using (48) by numerically integrating the Riemann integral 
in the upper line. 

2)         Confirm the condition (58) and use (60) to find the 

inner quantile indices  ,W k
iF , i=2, 3, ..., zk–1 of the piece-

wise partially linearly interpolated classical CDF  .pW
kF . 

3)         Calculate the Wald-expected utility of the 1D p-fuzzy 
rational GL-I using (52). information technologies 

and control 

 

 

linear-interpolated on the nodes (18). Then the integral in 
(49) can be easily calculated using the approximation (20). 
Let ibeg and iend are such indices that: 

       
1 and 

beg end

k g k k g k
i ii ix x x x          (53) 

Then the mean utilities (50) can be found in close 
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So, in the special case of partially linear-interpolated 
utility the General Problem in 3.2.2 can be solved using the 
Wald criterion utilizing the following simplification of the 
Universal Algorithm: 

Simplified Algorithm 1 

1) Create the z(k)g triplets       ; ;k g k g k g
i i ix F u  leaving the 

 k g
iF  unknown. 

2) Calculate the mean utilities  ,p k
iI for i=1, 2,…, zk-1 using 

(53) and (54). 
3) Solve the LP problem (50) under the linear constraints (51) 

and find the inner quantile indices  ,W k
iF , i=2, 3, ..., zk–1 of 

the piece-wise partially linearly approximated classical CDF
 .pW

kF . 
4) Calculate the Wald-expected utility of the 1D p-fuzzy 

rational GL-I using (52). 
 
3.2.3.2. Increasing Mean Utilities under Wald 
Criterion (Q=W) 

Let the mean utilities be increasing for pfr
kg : 

   , ,
-1
p k p k

iiI I , i=2, 3, ..., zk–1.  (55) 
Condition (55) is often fulfilled, e.g. when the utility 

function u(.) is monotonically increasing in the interval 
   
1 ; 

k

k k
zx x 

  
 so that for    

1 ; 
k

k k
a zx x x    

 and 

   
1 ; 

k

k k
b zx x x    

 

if xa > xb, then u(xa)  u(xb).   (56) 
Since the coefficients of the linear function 

      
1

, , ,
-1

=2

kz
W k p k p k
i ii

i

F I I


  are entirely non-positive, then 

the minimum would be identified only for the greatest 
values of the unknown variables that obey the linear 
constraints, i.e.  

   , ,W k u k
k kF F , i=2, 3, ..., zk–1.  (57) 

So, in the special case of increasing mean utilities the 
General Problem in 3.2.2 can be solved using the Wald 
criterion utilizing the following simplification of the 
Universal Algorithm: 

 
 
Simplified Algorithm 2 

1) Calculate the mean utilities  ,p k
iI for i=1, 2,…, zk-1 using 

(48) by numerically integrating the Riemann integral in the 
upper line. 

2)         Confirm the condition (55) and use (57) to find the 

inner quantile indices  ,W k
iF , i=2, 3, ..., zk–1 of the piece-

wise partially linearly interpolated classical CDF  .pW
kF . 

3)         Calculate the Wald-expected utility of the 1D p-fuzzy 
rational GL-I using (52). 

4)  
3.2.3.3. Decreasing Mean Utilities under Wald 
Criterion (Q=W) 

Let the mean utilities be decreasing for pfr
kg : 

   , ,
-1
p k p k

iiI I , i=2, 3, ..., zk–1.    (58) 
Condition (58) is often fulfilled, e.g. when the utility 

function u(.) is monotonically decreasing in the interval 
   
1 ; 

k

k k
zx x 

  
 so that for    

1 ; 
k

k k
a zx x x    

 and 

   
1 ; 

k

k k
b zx x x    

 

if xa > xb, then u(xa)   u(xb).   (59) 
Since the coefficients of the linear function 

      
1

, , ,
-1

=2

kz
W k p k p k
i ii

i

F I I


  are entirely non-negative, then 

the minimum would be identified only for the smallest 
values of the unknown variables that obey the linear 
constraints, i.e. 

   , ,W k d k
k kF F , i=2, 3, ..., zk–1.   (60) 

So, in the special case of decreasing mean utilities the 
General Problem in 3.2.2 can be solved using the Wald 
criterion utilising the following simplification of the 
Universal Algorithm: 

 
Simplified Algorithm 3 

1)          Calculate the mean utilities  ,p k
iI for i=1, 2,…, zk-1 

using (48) by numerically integrating the Riemann integral 
in the upper line. 

2)         Confirm the condition (58) and use (60) to find the 

inner quantile indices  ,W k
iF , i=2, 3, ..., zk–1 of the piece-

wise partially linearly interpolated classical CDF  .pW
kF . 

3)         Calculate the Wald-expected utility of the 1D p-fuzzy 
rational GL-I using (52). information technologies 

and control 

 

 

linear-interpolated on the nodes (18). Then the integral in 
(49) can be easily calculated using the approximation (20). 
Let ibeg and iend are such indices that: 

       
1 and 

beg end

k g k k g k
i ii ix x x x          (53) 

Then the mean utilities (50) can be found in close 
form by 
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So, in the special case of partially linear-interpolated 
utility the General Problem in 3.2.2 can be solved using the 
Wald criterion utilizing the following simplification of the 
Universal Algorithm: 

Simplified Algorithm 1 

1) Create the z(k)g triplets       ; ;k g k g k g
i i ix F u  leaving the 

 k g
iF  unknown. 

2) Calculate the mean utilities  ,p k
iI for i=1, 2,…, zk-1 using 

(53) and (54). 
3) Solve the LP problem (50) under the linear constraints (51) 

and find the inner quantile indices  ,W k
iF , i=2, 3, ..., zk–1 of 

the piece-wise partially linearly approximated classical CDF
 .pW

kF . 
4) Calculate the Wald-expected utility of the 1D p-fuzzy 

rational GL-I using (52). 
 
3.2.3.2. Increasing Mean Utilities under Wald 
Criterion (Q=W) 

Let the mean utilities be increasing for pfr
kg : 

   , ,
-1
p k p k

iiI I , i=2, 3, ..., zk–1.  (55) 
Condition (55) is often fulfilled, e.g. when the utility 

function u(.) is monotonically increasing in the interval 
   
1 ; 

k

k k
zx x 

  
 so that for    

1 ; 
k

k k
a zx x x    

 and 

   
1 ; 

k

k k
b zx x x    

 

if xa > xb, then u(xa)  u(xb).   (56) 
Since the coefficients of the linear function 

      
1

, , ,
-1

=2

kz
W k p k p k
i ii

i

F I I


  are entirely non-positive, then 

the minimum would be identified only for the greatest 
values of the unknown variables that obey the linear 
constraints, i.e.  

   , ,W k u k
k kF F , i=2, 3, ..., zk–1.  (57) 

So, in the special case of increasing mean utilities the 
General Problem in 3.2.2 can be solved using the Wald 
criterion utilizing the following simplification of the 
Universal Algorithm: 

 
 
Simplified Algorithm 2 

1) Calculate the mean utilities  ,p k
iI for i=1, 2,…, zk-1 using 

(48) by numerically integrating the Riemann integral in the 
upper line. 

2)         Confirm the condition (55) and use (57) to find the 

inner quantile indices  ,W k
iF , i=2, 3, ..., zk–1 of the piece-

wise partially linearly interpolated classical CDF  .pW
kF . 

3)         Calculate the Wald-expected utility of the 1D p-fuzzy 
rational GL-I using (52). 

4)  
3.2.3.3. Decreasing Mean Utilities under Wald 
Criterion (Q=W) 

Let the mean utilities be decreasing for pfr
kg : 

   , ,
-1
p k p k

iiI I , i=2, 3, ..., zk–1.    (58) 
Condition (58) is often fulfilled, e.g. when the utility 

function u(.) is monotonically decreasing in the interval 
   
1 ; 

k

k k
zx x 

  
 so that for    

1 ; 
k

k k
a zx x x    

 and 

   
1 ; 

k

k k
b zx x x    

 

if xa > xb, then u(xa)   u(xb).   (59) 
Since the coefficients of the linear function 

      
1

, , ,
-1

=2

kz
W k p k p k
i ii

i

F I I


  are entirely non-negative, then 

the minimum would be identified only for the smallest 
values of the unknown variables that obey the linear 
constraints, i.e. 

   , ,W k d k
k kF F , i=2, 3, ..., zk–1.   (60) 

So, in the special case of decreasing mean utilities the 
General Problem in 3.2.2 can be solved using the Wald 
criterion utilising the following simplification of the 
Universal Algorithm: 

 
Simplified Algorithm 3 

1)          Calculate the mean utilities  ,p k
iI for i=1, 2,…, zk-1 

using (48) by numerically integrating the Riemann integral 
in the upper line. 

2)         Confirm the condition (58) and use (60) to find the 

inner quantile indices  ,W k
iF , i=2, 3, ..., zk–1 of the piece-

wise partially linearly interpolated classical CDF  .pW
kF . 

3)         Calculate the Wald-expected utility of the 1D p-fuzzy 
rational GL-I using (52). 
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linear-interpolated on the nodes (18). Then the integral in 
(49) can be easily calculated using the approximation (20). 
Let ibeg and iend are such indices that: 

       
1 and 

beg end

k g k k g k
i ii ix x x x          (53) 

Then the mean utilities (50) can be found in close 
form by 
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So, in the special case of partially linear-interpolated 
utility the General Problem in 3.2.2 can be solved using the 
Wald criterion utilizing the following simplification of the 
Universal Algorithm: 

Simplified Algorithm 1 

1) Create the z(k)g triplets       ; ;k g k g k g
i i ix F u  leaving the 

 k g
iF  unknown. 

2) Calculate the mean utilities  ,p k
iI for i=1, 2,…, zk-1 using 

(53) and (54). 
3) Solve the LP problem (50) under the linear constraints (51) 

and find the inner quantile indices  ,W k
iF , i=2, 3, ..., zk–1 of 

the piece-wise partially linearly approximated classical CDF
 .pW

kF . 
4) Calculate the Wald-expected utility of the 1D p-fuzzy 

rational GL-I using (52). 
 
3.2.3.2. Increasing Mean Utilities under Wald 
Criterion (Q=W) 

Let the mean utilities be increasing for pfr
kg : 

   , ,
-1
p k p k

iiI I , i=2, 3, ..., zk–1.  (55) 
Condition (55) is often fulfilled, e.g. when the utility 

function u(.) is monotonically increasing in the interval 
   
1 ; 

k

k k
zx x 

  
 so that for    

1 ; 
k

k k
a zx x x    

 and 

   
1 ; 

k

k k
b zx x x    

 

if xa > xb, then u(xa)  u(xb).   (56) 
Since the coefficients of the linear function 

      
1

, , ,
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=2
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W k p k p k
i ii

i

F I I


  are entirely non-positive, then 

the minimum would be identified only for the greatest 
values of the unknown variables that obey the linear 
constraints, i.e.  

   , ,W k u k
k kF F , i=2, 3, ..., zk–1.  (57) 

So, in the special case of increasing mean utilities the 
General Problem in 3.2.2 can be solved using the Wald 
criterion utilizing the following simplification of the 
Universal Algorithm: 

 
 
Simplified Algorithm 2 

1) Calculate the mean utilities  ,p k
iI for i=1, 2,…, zk-1 using 

(48) by numerically integrating the Riemann integral in the 
upper line. 

2)         Confirm the condition (55) and use (57) to find the 

inner quantile indices  ,W k
iF , i=2, 3, ..., zk–1 of the piece-

wise partially linearly interpolated classical CDF  .pW
kF . 

3)         Calculate the Wald-expected utility of the 1D p-fuzzy 
rational GL-I using (52). 

4)  
3.2.3.3. Decreasing Mean Utilities under Wald 
Criterion (Q=W) 

Let the mean utilities be decreasing for pfr
kg : 

   , ,
-1
p k p k

iiI I , i=2, 3, ..., zk–1.    (58) 
Condition (58) is often fulfilled, e.g. when the utility 

function u(.) is monotonically decreasing in the interval 
   
1 ; 

k

k k
zx x 

  
 so that for    

1 ; 
k

k k
a zx x x    

 and 

   
1 ; 

k

k k
b zx x x    

 

if xa > xb, then u(xa)   u(xb).   (59) 
Since the coefficients of the linear function 

      
1

, , ,
-1

=2

kz
W k p k p k
i ii

i

F I I


  are entirely non-negative, then 

the minimum would be identified only for the smallest 
values of the unknown variables that obey the linear 
constraints, i.e. 

   , ,W k d k
k kF F , i=2, 3, ..., zk–1.   (60) 

So, in the special case of decreasing mean utilities the 
General Problem in 3.2.2 can be solved using the Wald 
criterion utilising the following simplification of the 
Universal Algorithm: 

 
Simplified Algorithm 3 

1)          Calculate the mean utilities  ,p k
iI for i=1, 2,…, zk-1 

using (48) by numerically integrating the Riemann integral 
in the upper line. 

2)         Confirm the condition (58) and use (60) to find the 

inner quantile indices  ,W k
iF , i=2, 3, ..., zk–1 of the piece-

wise partially linearly interpolated classical CDF  .pW
kF . 

3)         Calculate the Wald-expected utility of the 1D p-fuzzy 
rational GL-I using (52). 
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3.2.3.3. Decreasing Mean Utilities under Wald Cri-
terion (Q=W)

Let the mean utilities be decreasing for gk
pfr:

(58)

Condition (58) is often fulfi lled, e.g. when the utili-
ty function u(.) is monotonically decreasing in the interval  
[x1

(k); xzk
(k)] so that for xa ϵ [x1

(k); xzk
(k)] and xb ϵ [xl

(k); xzk
(k)]

(59) if xa > xb, then u(xa) ≤ u(xb).

Since the coeffi  cients of the linear function

    are entirely non-negative, 

then the minimum would be identifi ed only for the  smallest 
values of the unknown variables that obey the linear con-
straints, i.e.

(60)

So, in the special case of decreasing mean utilities the 
General Problem in 3.2.2 can be solved using the Wald cri-
terion utilising the following simplifi cation of the Universal 
Algorithm:

Simplifi ed Algorithm 3
1) Calculate the mean utilities Ii

p,(k) for i=1, 2,…, zk-1 
using (48) by numerically integrating the Riemann integral 
in the upper line.

2) Confi rm the condition (58) and use (60) to fi nd the 
inner quantile indices Fi

W,(k) , i=2, 3, ..., zk–1 of the piece-wise 
partially linearly interpolated classical CDF Ik

pW.
3) Calculate the Wald-expected utility of the 1D 

p-fuzzy rational GL-I using (52).

3.2.3.4. Partially Linear-Interpolated Monotonic 
Utility under Wald criterion (Q=W)

Let the utility (19) be monotonic and partially lin-
ear-interpolated on the nodes (18). Then either condition 
(56) or condition (58) will hold. Because of that mean util-
ities are going to be either increasing or decreasing and the 
unknown inner quantile indices could be calculated respec-
tively with (57) or with (60). The mean utilities do not need 
to be calculated. The W-expected utility can be calculated as 
in section 3.1.1.

So, in the special case of partially linear-interpolat-
ed monotonic utility the General Problem in 3.2.2 can be 
solved using the Wald criterion utilizing the following sim-
plifi cation of the Universal Algorithm:

Simplifi ed Algorithm 4
1) If condition (56) holds then use (57) to fi nd the inner 

quantile indices Fi
W,(k), i=2, 3, ..., zk–1 of the piece-wise par-

tially linearly interpolated classical CDF Fk
pW(.). 

2) If condition (59) holds then use (60) to fi nd the inner 
quantile indices Fi

W,(k), i=2, 3, ..., zk–1 of the piece-wise par-
tially linearly interpolated classical CDF Fk

pW(.). 
3) Create z(k)g triplets (20) by merging the utility nodes 

(18) and the nodes {(x1
(k); Fi

W,(k))|k=1,2,...,zk}, of the p-Wald 
approximated CDF: Fk

pW(.) .

4) Calculate the Wald-expected utility Ek
pW (u| Fk

pR) of 
the 1D p-fuzzy rational GL-I using the RHS of (21).

3.2.3.5. Increasing Arctan Utility under Wald Cri-
terion (Q=W)

Let the utility be increasing and arctan approximated 
(22). Then condition (56) holds and therefore (55) holds. 
Because the mean utilities are increasing, the unknown in-
ner quantile indices could be calculated with (57). The mean 
utilities do not need to be calculated.  The W-expected utility 
can be calculated with modifi cation of formula (29) where 
the nodes of the CDF Fk

(k) have to be substituted with the 
nodes of the CDF Fk

W,(k). The constants A and B have the 
meaning of Aincr and Bincr from (25).

(61)

Here Ci
(k) are given in (30). 

So, in the special case of increasing arctan-approxi-
mated utility the General Problem in 3.2.2 can be solved us-
ing the Wald criterion utilising the following simplifi cation 
of the Universal Algorithm:

Simplifi ed Algorithm 5
1) Use (57) to fi nd the inner quantile indices Fi

W,(k), i=2, 
3, ..., zk–1 of the piece-wise partially linearly interpolated 
classical CDF Fk

pW(.).
2) Use (30) to calculate Ci

(k) for i=1, 2,…, zk-1
3) Use (25) to calculate the constants Aincr and Bincr.  
4) Calculate the Wald-expected utility Ek

pW (u| Fk
pR) of 

the 1D p-fuzzy rational GL-I using (61).

3.2.3.6. Decreasing Arctan Utility under Wald Cri-
terion (Q=W)

Let the utility be decreasing and arctan approximat-
ed (23). Then condition (59) holds and therefore (58) holds. 
Because the mean utilities are decreasing, the unknown in-
ner quantile indices could be calculated with (60). The mean 
utilities do not need to be calculated.  The W-expected utility 
can be calculated with modifi cation of formula (29) where 
the nodes of the CDF Fk

(k) have to be substituted with the 
nodes of the CDF Fk

W,(k). The constants A and B have the 
meaning of Adecr and Bdecr from (27).
(62)
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linear-interpolated on the nodes (18). Then the integral in 
(49) can be easily calculated using the approximation (20). 
Let ibeg and iend are such indices that: 

       
1 and 

beg end

k g k k g k
i ii ix x x x          (53) 

Then the mean utilities (50) can be found in close 
form by 

 

    
         

   

     

,

1

11

1 1

1

1

2
for ,

( ) for .

end

beg

p k
i

k k
ii k k

iii
k g k g k g k g

i ii i
i i

k k k
i ii

I

x x
x x

x x u u

u x x x





 






 


  
  






 (54) 

So, in the special case of partially linear-interpolated 
utility the General Problem in 3.2.2 can be solved using the 
Wald criterion utilizing the following simplification of the 
Universal Algorithm: 

Simplified Algorithm 1 

1) Create the z(k)g triplets       ; ;k g k g k g
i i ix F u  leaving the 

 k g
iF  unknown. 

2) Calculate the mean utilities  ,p k
iI for i=1, 2,…, zk-1 using 

(53) and (54). 
3) Solve the LP problem (50) under the linear constraints (51) 

and find the inner quantile indices  ,W k
iF , i=2, 3, ..., zk–1 of 

the piece-wise partially linearly approximated classical CDF
 .pW

kF . 
4) Calculate the Wald-expected utility of the 1D p-fuzzy 

rational GL-I using (52). 
 
3.2.3.2. Increasing Mean Utilities under Wald 
Criterion (Q=W) 

Let the mean utilities be increasing for pfr
kg : 

   , ,
-1
p k p k

iiI I , i=2, 3, ..., zk–1.  (55) 
Condition (55) is often fulfilled, e.g. when the utility 

function u(.) is monotonically increasing in the interval 
   
1 ; 

k

k k
zx x 

  
 so that for    

1 ; 
k

k k
a zx x x    

 and 

   
1 ; 

k

k k
b zx x x    

 

if xa > xb, then u(xa)  u(xb).   (56) 
Since the coefficients of the linear function 

      
1

, , ,
-1

=2

kz
W k p k p k
i ii

i

F I I


  are entirely non-positive, then 

the minimum would be identified only for the greatest 
values of the unknown variables that obey the linear 
constraints, i.e.  

   , ,W k u k
k kF F , i=2, 3, ..., zk–1.  (57) 

So, in the special case of increasing mean utilities the 
General Problem in 3.2.2 can be solved using the Wald 
criterion utilizing the following simplification of the 
Universal Algorithm: 

 
 
Simplified Algorithm 2 

1) Calculate the mean utilities  ,p k
iI for i=1, 2,…, zk-1 using 

(48) by numerically integrating the Riemann integral in the 
upper line. 

2)         Confirm the condition (55) and use (57) to find the 

inner quantile indices  ,W k
iF , i=2, 3, ..., zk–1 of the piece-

wise partially linearly interpolated classical CDF  .pW
kF . 

3)         Calculate the Wald-expected utility of the 1D p-fuzzy 
rational GL-I using (52). 

4)  
3.2.3.3. Decreasing Mean Utilities under Wald 
Criterion (Q=W) 

Let the mean utilities be decreasing for pfr
kg : 

   , ,
-1
p k p k

iiI I , i=2, 3, ..., zk–1.    (58) 
Condition (58) is often fulfilled, e.g. when the utility 

function u(.) is monotonically decreasing in the interval 
   
1 ; 

k

k k
zx x 

  
 so that for    

1 ; 
k

k k
a zx x x    

 and 

   
1 ; 

k

k k
b zx x x    

 

if xa > xb, then u(xa)   u(xb).   (59) 
Since the coefficients of the linear function 

      
1

, , ,
-1

=2

kz
W k p k p k
i ii

i

F I I


  are entirely non-negative, then 

the minimum would be identified only for the smallest 
values of the unknown variables that obey the linear 
constraints, i.e. 

   , ,W k d k
k kF F , i=2, 3, ..., zk–1.   (60) 

So, in the special case of decreasing mean utilities the 
General Problem in 3.2.2 can be solved using the Wald 
criterion utilising the following simplification of the 
Universal Algorithm: 

 
Simplified Algorithm 3 

1)          Calculate the mean utilities  ,p k
iI for i=1, 2,…, zk-1 

using (48) by numerically integrating the Riemann integral 
in the upper line. 

2)         Confirm the condition (58) and use (60) to find the 

inner quantile indices  ,W k
iF , i=2, 3, ..., zk–1 of the piece-

wise partially linearly interpolated classical CDF  .pW
kF . 

3)         Calculate the Wald-expected utility of the 1D p-fuzzy 
rational GL-I using (52). information technologies 

and control 

 

 

linear-interpolated on the nodes (18). Then the integral in 
(49) can be easily calculated using the approximation (20). 
Let ibeg and iend are such indices that: 

       
1 and 

beg end

k g k k g k
i ii ix x x x          (53) 

Then the mean utilities (50) can be found in close 
form by 

 

    
         

   

     

,

1

11

1 1

1

1

2
for ,

( ) for .

end

beg

p k
i

k k
ii k k

iii
k g k g k g k g

i ii i
i i

k k k
i ii

I

x x
x x

x x u u

u x x x





 






 


  
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





 (54) 

So, in the special case of partially linear-interpolated 
utility the General Problem in 3.2.2 can be solved using the 
Wald criterion utilizing the following simplification of the 
Universal Algorithm: 

Simplified Algorithm 1 

1) Create the z(k)g triplets       ; ;k g k g k g
i i ix F u  leaving the 

 k g
iF  unknown. 

2) Calculate the mean utilities  ,p k
iI for i=1, 2,…, zk-1 using 

(53) and (54). 
3) Solve the LP problem (50) under the linear constraints (51) 

and find the inner quantile indices  ,W k
iF , i=2, 3, ..., zk–1 of 

the piece-wise partially linearly approximated classical CDF
 .pW

kF . 
4) Calculate the Wald-expected utility of the 1D p-fuzzy 

rational GL-I using (52). 
 
3.2.3.2. Increasing Mean Utilities under Wald 
Criterion (Q=W) 

Let the mean utilities be increasing for pfr
kg : 

   , ,
-1
p k p k

iiI I , i=2, 3, ..., zk–1.  (55) 
Condition (55) is often fulfilled, e.g. when the utility 

function u(.) is monotonically increasing in the interval 
   
1 ; 

k

k k
zx x 

  
 so that for    

1 ; 
k

k k
a zx x x    

 and 

   
1 ; 

k

k k
b zx x x    

 

if xa > xb, then u(xa)  u(xb).   (56) 
Since the coefficients of the linear function 

      
1

, , ,
-1

=2

kz
W k p k p k
i ii

i

F I I


  are entirely non-positive, then 

the minimum would be identified only for the greatest 
values of the unknown variables that obey the linear 
constraints, i.e.  

   , ,W k u k
k kF F , i=2, 3, ..., zk–1.  (57) 

So, in the special case of increasing mean utilities the 
General Problem in 3.2.2 can be solved using the Wald 
criterion utilizing the following simplification of the 
Universal Algorithm: 

 
 
Simplified Algorithm 2 

1) Calculate the mean utilities  ,p k
iI for i=1, 2,…, zk-1 using 

(48) by numerically integrating the Riemann integral in the 
upper line. 

2)         Confirm the condition (55) and use (57) to find the 

inner quantile indices  ,W k
iF , i=2, 3, ..., zk–1 of the piece-

wise partially linearly interpolated classical CDF  .pW
kF . 

3)         Calculate the Wald-expected utility of the 1D p-fuzzy 
rational GL-I using (52). 

4)  
3.2.3.3. Decreasing Mean Utilities under Wald 
Criterion (Q=W) 

Let the mean utilities be decreasing for pfr
kg : 

   , ,
-1
p k p k

iiI I , i=2, 3, ..., zk–1.    (58) 
Condition (58) is often fulfilled, e.g. when the utility 

function u(.) is monotonically decreasing in the interval 
   
1 ; 

k

k k
zx x 

  
 so that for    

1 ; 
k

k k
a zx x x    

 and 

   
1 ; 

k

k k
b zx x x    

 

if xa > xb, then u(xa)   u(xb).   (59) 
Since the coefficients of the linear function 

      
1

, , ,
-1

=2

kz
W k p k p k
i ii

i

F I I


  are entirely non-negative, then 

the minimum would be identified only for the smallest 
values of the unknown variables that obey the linear 
constraints, i.e. 

   , ,W k d k
k kF F , i=2, 3, ..., zk–1.   (60) 

So, in the special case of decreasing mean utilities the 
General Problem in 3.2.2 can be solved using the Wald 
criterion utilising the following simplification of the 
Universal Algorithm: 

 
Simplified Algorithm 3 

1)          Calculate the mean utilities  ,p k
iI for i=1, 2,…, zk-1 

using (48) by numerically integrating the Riemann integral 
in the upper line. 

2)         Confirm the condition (58) and use (60) to find the 

inner quantile indices  ,W k
iF , i=2, 3, ..., zk–1 of the piece-

wise partially linearly interpolated classical CDF  .pW
kF . 

3)         Calculate the Wald-expected utility of the 1D p-fuzzy 
rational GL-I using (52). 
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linear-interpolated on the nodes (18). Then the integral in 
(49) can be easily calculated using the approximation (20). 
Let ibeg and iend are such indices that: 

       
1 and 

beg end

k g k k g k
i ii ix x x x          (53) 

Then the mean utilities (50) can be found in close 
form by 
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 (54) 

So, in the special case of partially linear-interpolated 
utility the General Problem in 3.2.2 can be solved using the 
Wald criterion utilizing the following simplification of the 
Universal Algorithm: 

Simplified Algorithm 1 

1) Create the z(k)g triplets       ; ;k g k g k g
i i ix F u  leaving the 

 k g
iF  unknown. 

2) Calculate the mean utilities  ,p k
iI for i=1, 2,…, zk-1 using 

(53) and (54). 
3) Solve the LP problem (50) under the linear constraints (51) 

and find the inner quantile indices  ,W k
iF , i=2, 3, ..., zk–1 of 

the piece-wise partially linearly approximated classical CDF
 .pW

kF . 
4) Calculate the Wald-expected utility of the 1D p-fuzzy 

rational GL-I using (52). 
 
3.2.3.2. Increasing Mean Utilities under Wald 
Criterion (Q=W) 

Let the mean utilities be increasing for pfr
kg : 

   , ,
-1
p k p k

iiI I , i=2, 3, ..., zk–1.  (55) 
Condition (55) is often fulfilled, e.g. when the utility 

function u(.) is monotonically increasing in the interval 
   
1 ; 

k

k k
zx x 

  
 so that for    

1 ; 
k

k k
a zx x x    

 and 

   
1 ; 

k

k k
b zx x x    

 

if xa > xb, then u(xa)  u(xb).   (56) 
Since the coefficients of the linear function 

      
1

, , ,
-1

=2

kz
W k p k p k
i ii

i

F I I


  are entirely non-positive, then 

the minimum would be identified only for the greatest 
values of the unknown variables that obey the linear 
constraints, i.e.  

   , ,W k u k
k kF F , i=2, 3, ..., zk–1.  (57) 

So, in the special case of increasing mean utilities the 
General Problem in 3.2.2 can be solved using the Wald 
criterion utilizing the following simplification of the 
Universal Algorithm: 

 
 
Simplified Algorithm 2 

1) Calculate the mean utilities  ,p k
iI for i=1, 2,…, zk-1 using 

(48) by numerically integrating the Riemann integral in the 
upper line. 

2)         Confirm the condition (55) and use (57) to find the 

inner quantile indices  ,W k
iF , i=2, 3, ..., zk–1 of the piece-

wise partially linearly interpolated classical CDF  .pW
kF . 

3)         Calculate the Wald-expected utility of the 1D p-fuzzy 
rational GL-I using (52). 

4)  
3.2.3.3. Decreasing Mean Utilities under Wald 
Criterion (Q=W) 

Let the mean utilities be decreasing for pfr
kg : 

   , ,
-1
p k p k

iiI I , i=2, 3, ..., zk–1.    (58) 
Condition (58) is often fulfilled, e.g. when the utility 

function u(.) is monotonically decreasing in the interval 
   
1 ; 

k

k k
zx x 

  
 so that for    

1 ; 
k

k k
a zx x x    

 and 

   
1 ; 

k

k k
b zx x x    

 

if xa > xb, then u(xa)   u(xb).   (59) 
Since the coefficients of the linear function 

      
1

, , ,
-1

=2

kz
W k p k p k
i ii

i

F I I


  are entirely non-negative, then 

the minimum would be identified only for the smallest 
values of the unknown variables that obey the linear 
constraints, i.e. 

   , ,W k d k
k kF F , i=2, 3, ..., zk–1.   (60) 

So, in the special case of decreasing mean utilities the 
General Problem in 3.2.2 can be solved using the Wald 
criterion utilising the following simplification of the 
Universal Algorithm: 

 
Simplified Algorithm 3 

1)          Calculate the mean utilities  ,p k
iI for i=1, 2,…, zk-1 

using (48) by numerically integrating the Riemann integral 
in the upper line. 

2)         Confirm the condition (58) and use (60) to find the 

inner quantile indices  ,W k
iF , i=2, 3, ..., zk–1 of the piece-

wise partially linearly interpolated classical CDF  .pW
kF . 

3)         Calculate the Wald-expected utility of the 1D p-fuzzy 
rational GL-I using (52). 
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3.2.3.4. Partially Linear-Interpolated 
Monotonic Utility under Wald criterion (Q=W) 

Let the utility (19) be monotonic and partially linear-
interpolated on the nodes (18). Then either condition (56) or 
condition (58) will hold. Because of that mean utilities are 
going to be either increasing or decreasing and the unknown 
inner quantile indices could be calculated respectively with 
(57) or with (60). The mean utilities do not need to be 
calculated.  The W-expected utility can be calculated as in 
section 3.1.1. 

So, in the special case of partially linear-interpolated 
monotonic utility the General Problem in 3.2.2 can be 
solved using the Wald criterion utilizing the following 
simplification of the Universal Algorithm: 

Simplified Algorithm 4 
1) If condition (56) holds then use (57) to find the inner 

quantile indices  ,W k
iF , i=2, 3, ..., zk–1 of the piece-wise 

partially linearly interpolated classical CDF  .pW
kF .  

2) If condition (59) holds then use (60) to find the inner 

quantile indices  ,W k
iF , i=2, 3, ..., zk–1 of the piece-wise 

partially linearly interpolated classical CDF  .pW
kF .  

3) Create z(k)g triplets (20) by merging the utility nodes (18) 

and the nodes      ,; | 1, 2, ,k W k
i i kx F k z  ,  of the 

p-Wald approximated CDF:  .pW
kF . 

4) Calculate the Wald-expected utility ( | )pW pR
k kE u F of the 1D 

p-fuzzy rational GL-I using the RHS of (21). 
 
3.2.3.5. Increasing Arctan Utility under Wald 
Criterion (Q=W) 

Let the utility be increasing and arctan approximated 
(22). Then condition (56) holds and therefore (55) holds. 
Because the mean utilities are increasing, the unknown 
inner quantile indices could be calculated with (57). The 
mean utilities do not need to be calculated.  The W-expected 
utility can be calculated with modification of formula (29) 

where the nodes of the CDF  k
kF have to be substituted with 

the nodes of the CDF  ,W k
kF . The constants A and B have 

the meaning of Aincr and Bincr from (25). 
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Here  k
iC are given in (30).  

So, in the special case of increasing arctan-
approximated utility the General Problem in 3.2.2 can be 
solved using the Wald criterion utilising the following 
simplification of the Universal Algorithm: 

Simplified Algorithm 5 

1) Use (57) to find the inner quantile indices  ,W k
iF , i=2, 3, ..., 

zk–1 of the piece-wise partially linearly interpolated 
classical CDF  .pW

kF .  

2) Use (30) to calculate  k
iC for i=1, 2,…, zk-1 

3) Use (25) to calculate the constants Aincr and Bincr.   
4) Calculate the Wald-expected utility ( | )pW pR

k kE u F of the 1D 
p-fuzzy rational GL-I using (61). 

5)  
3.2.3.6. Decreasing Arctan Utility under Wald 
Criterion (Q=W) 

Let the utility be decreasing and arctan approximated 
(23). Then condition (59) holds and therefore (58) holds. 
Because the mean utilities are decreasing, the unknown 
inner quantile indices could be calculated with (60). The 
mean utilities do not need to be calculated.  The W-expected 
utility can be calculated with modification of formula (29) 

where the nodes of the CDF  k
kF have to be substituted with 

the nodes of the CDF  ,W k
kF . The constants A and B have 

the meaning of Adecr and Bdecr from (27). 
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(62) 

Here,  k
iC are given in (30).  

So, in the special case of decreasing arctan-
approximated utility the General Problem in 3.2.2 can be 
solved using the Wald criterion utilizing the following 
simplification of the Universal Algorithm: 

Simplified Algorithm 6 

1)       Use (60) to find the inner quantile indices  ,W k
iF , i=2, 

3, ..., zk–1 of the piece-wise partially linearly interpolated 
classical CDF  .pW

kF .  

2)        Use (30) to calculate  k
iC for i=1, 2,…, zk-1 

3)        Use (27) to calculate the constants Adecr  and Bdecr.   
4)        Calculate the Wald-expected utility ( | )pW pR

k kE u F of 
the 1D p-fuzzy rational GL-I using (62). 
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3.2.3.4. Partially Linear-Interpolated 
Monotonic Utility under Wald criterion (Q=W) 

Let the utility (19) be monotonic and partially linear-
interpolated on the nodes (18). Then either condition (56) or 
condition (58) will hold. Because of that mean utilities are 
going to be either increasing or decreasing and the unknown 
inner quantile indices could be calculated respectively with 
(57) or with (60). The mean utilities do not need to be 
calculated.  The W-expected utility can be calculated as in 
section 3.1.1. 

So, in the special case of partially linear-interpolated 
monotonic utility the General Problem in 3.2.2 can be 
solved using the Wald criterion utilizing the following 
simplification of the Universal Algorithm: 

Simplified Algorithm 4 
1) If condition (56) holds then use (57) to find the inner 

quantile indices  ,W k
iF , i=2, 3, ..., zk–1 of the piece-wise 

partially linearly interpolated classical CDF  .pW
kF .  

2) If condition (59) holds then use (60) to find the inner 

quantile indices  ,W k
iF , i=2, 3, ..., zk–1 of the piece-wise 

partially linearly interpolated classical CDF  .pW
kF .  

3) Create z(k)g triplets (20) by merging the utility nodes (18) 

and the nodes      ,; | 1, 2, ,k W k
i i kx F k z  ,  of the 

p-Wald approximated CDF:  .pW
kF . 

4) Calculate the Wald-expected utility ( | )pW pR
k kE u F of the 1D 

p-fuzzy rational GL-I using the RHS of (21). 
 
3.2.3.5. Increasing Arctan Utility under Wald 
Criterion (Q=W) 

Let the utility be increasing and arctan approximated 
(22). Then condition (56) holds and therefore (55) holds. 
Because the mean utilities are increasing, the unknown 
inner quantile indices could be calculated with (57). The 
mean utilities do not need to be calculated.  The W-expected 
utility can be calculated with modification of formula (29) 

where the nodes of the CDF  k
kF have to be substituted with 

the nodes of the CDF  ,W k
kF . The constants A and B have 

the meaning of Aincr and Bincr from (25). 
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Here  k
iC are given in (30).  

So, in the special case of increasing arctan-
approximated utility the General Problem in 3.2.2 can be 
solved using the Wald criterion utilising the following 
simplification of the Universal Algorithm: 

Simplified Algorithm 5 

1) Use (57) to find the inner quantile indices  ,W k
iF , i=2, 3, ..., 

zk–1 of the piece-wise partially linearly interpolated 
classical CDF  .pW

kF .  

2) Use (30) to calculate  k
iC for i=1, 2,…, zk-1 

3) Use (25) to calculate the constants Aincr and Bincr.   
4) Calculate the Wald-expected utility ( | )pW pR

k kE u F of the 1D 
p-fuzzy rational GL-I using (61). 

5)  
3.2.3.6. Decreasing Arctan Utility under Wald 
Criterion (Q=W) 

Let the utility be decreasing and arctan approximated 
(23). Then condition (59) holds and therefore (58) holds. 
Because the mean utilities are decreasing, the unknown 
inner quantile indices could be calculated with (60). The 
mean utilities do not need to be calculated.  The W-expected 
utility can be calculated with modification of formula (29) 

where the nodes of the CDF  k
kF have to be substituted with 

the nodes of the CDF  ,W k
kF . The constants A and B have 

the meaning of Adecr and Bdecr from (27). 
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(62) 

Here,  k
iC are given in (30).  

So, in the special case of decreasing arctan-
approximated utility the General Problem in 3.2.2 can be 
solved using the Wald criterion utilizing the following 
simplification of the Universal Algorithm: 

Simplified Algorithm 6 

1)       Use (60) to find the inner quantile indices  ,W k
iF , i=2, 

3, ..., zk–1 of the piece-wise partially linearly interpolated 
classical CDF  .pW

kF .  

2)        Use (30) to calculate  k
iC for i=1, 2,…, zk-1 

3)        Use (27) to calculate the constants Adecr  and Bdecr.   
4)        Calculate the Wald-expected utility ( | )pW pR

k kE u F of 
the 1D p-fuzzy rational GL-I using (62). 
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Here, Ci
(k) are given in (30). 

So, in the special case of decreasing arctan-approxi-
mated utility the General Problem in 3.2.2 can be solved us-
ing the Wald criterion utilizing the following simplifi cation 
of the Universal Algorithm:

Simplifi ed Algorithm 6
1) Use (60) to fi nd the inner quantile indices Fi

W,(k) , 
i=2, 3, ..., zk–1 of the piece-wise partially linearly interpolat-
ed classical CDF Fk

pW(.). 
2) Use (30) to calculate Ci

(k) for i=1, 2,…, zk-1.
3) Use (27) to calculate the constants Adecr and Bdecr.  
4) Calculate the Wald-expected utility Ek

pW (u| Fk
pR) of 

the 1D p-fuzzy rational GL-I using (62).

3.2.4. Solution of the General Problem Using the 
Maximax Criterion (Q=¬W)

The maximax decision criterion under strict uncer-
tainty assumes that the best outcome always occurs [Hack-
ett, Luff rum, 1999]. The application of that concept in the 
case of a one-dimensional p-fuzzy rational GL-I implies to 
choose the quantile indices Fi

¬W,(k), i=2, 3, ..., zk–1, so that 
to maximize the pW-expected utility of the lottery given in 
(40). 

The rationale behind the maximax criterion is op-
posite to that of the Wald criterion. The required quantile 
indices Fi

¬W,(k), i=2, 3, ..., zk–1, may be identifi ed by trivial 
modifi cations of the proposed methods in section 3.2.3. The 
maximax-expected utility Ek

p¬W (u| Fk
pR) of the 1D p-fuzzy 

rational GL-I can be calculated using trivial adaptations of 
the algorithms proposed in section 3.2.3.

3.2.5. Solution of the General Problem Using the 
Hurwiczα Criterion (Q= Hα)

The Hurwiczα decision criterion under strict uncertain-
ty assumes that the choice of an alternative should be guided 
by a numerical index that is a weighted sum of the worst 
and the best outcome one can get from that alternative [Yag-
er, 2006]. The application of that concept in the case of a 
one-dimensional p-fuzzy rational GL-I implies to choose the 
quantile indices Fi

Hα,(k), i=2, 3, ..., zk–1 as weighted average 
of the quantile indices Fi

W,(k) and Fi
¬W(k) from sections 3.2.3 

and 3.2.4:
(63) Fi

Hα,(k), = αFi
W,(k)+(1-α) Fi

¬W(k),i=2, 3, ..., zk–1.
The coeffi  cient α ϵ [0;1] is a pessimism index that mea-

sured the pessimism of the DM. 
The Hurwiczα-expected utility Ek

pHα (u| Fk
pR) of the 1D 

p-fuzzy rational GL-I can be calculated again using trivial 
adaptations of the algorithms proposed in section 3.2.3.

4. Illustrative Numerical Examples

In this section we present two numerical examples to 
demonstrate how we apply the algorithms from section 3. 
These examples are part of previous larger studies (which 
are not the scope of the paper, hence will not be discussed 
in detail).

4.1. Example 1

A) Setup
Let’s analyze the 1-D random variable X, which is the 

body temperature of a grown up human being in degrees 
Celsius, where X takes values in the interval [30; 42]. The 
preferences of the DM over the set of prizes are non-mono-
tonic. Let us discuss the fi fth alternative (k=5) in the set of 
lotteries L. Let a p-ribbon CDF F5

pR(.) is constructed over 
the values of X based on seven elicited inner quantile indi-
ces. Here, z5=9 and the nodes are: (x1

(5) =30; F1
d,(5)= F1

u,(5)=0), 
(x2

(5) =31.5; F2
d,(5)=0.07, F2

u,(5)=0.13), (x3
(5) =33; F3

d,(5)=0.23, 
F3

u,(5)=0.31), (x4
(5) =34.5; F4

d,(5)=0.41, F4
u,(5)=0.51), (x5

(5) =36; 
F5

d,(5)=0.51, F5
u,(5)=0.65), (x6

(5) =37.5; F6
d,(5)=0.68, F6

u,(5)=0.80), 
(x7

(5) =39; F7
d,(5)=0.76, F7

u,(5)=0.88), (x8
(5) =40.5; F8

d,(5)=0.85, 
F8

u,(5)=0.95), (x9
(5) =42; F9

d,(5)= F9
u,(5)=1) The p-ribbon F5

pR(.) 
defi nes the p-fuzzy-rational GL-I – g5

pfr =< F5
pR(x); x >.

The non-monotonic utility function of the DM in the 
interval [30; 42] is partially linearly interpolated on zu=13 
utility quantile indices: u1(30)=0, u2(31)=0.06, u3(32)=0.09, 
u4(33)=0.15, u5(34)=0.3, u6(35)=0.55, u7(36)=0.7, u8(37)=0.6, 
u9(38)=0.4, u10(39)=0.2, u11(40)=0.15, u12(41)=0.1, u13(42)=0. 
The utility function id depicted on the lower section of fi g-
ure 1. 

The task is to approximate F5
pR(.) using Wald, maxi-

max and Hurwicz0.7 criteria and then calculate Wald, maxi-
max and Hurwicz0.7 expected utility of g5

pfr .
Because the utility is partially linearly interpolated, we 

will apply simplifi ed Algorithm 1 and two trivial modifi ca-
tions of it. As long as the fi rst two steps do not depend on the 
approximation of the CDF, the mean utilities Ii

p,(5), for i=1,2, 
…, 8 can be calculated for all three tasks. For this purpose, 
we need to use approximation of utility of type (20), neglect-
ing the Fi

(5)g(.) . Here, z(5)g is 17 and the triplets (20) convert 
into pairs, as follows: 

(x1
(5)g=30; ui

(5)g=0), (x2
(5)g=31; u2

(5)g=0.06), 
(x3

(5)g=31.5; u3
(5)g=0.075), (x4

(5)g=32; u4
(5)g=0.09), (x5

(5)g=33; 
u5

(5)g=0.15), (x6
(5)g=34; u6

(5)g=0.30), (x7
(5)g=34.5; u7

(5)g=0.425), 
(x8

(5)g=35; u8
(5)g=0.55), (x9

(5)g=36; u9
(5)g=0.70), (x10

(5)g=37; 
u10

(5)g=0.60), (x11
(5)g=37.5; u11

(5)g=0.50), (x12
(5)g=38; u12

(5)g=0.40), 
(x13

(5)g=39; u`13
(5)g=0.20), (x14

(5)g=40; u14
(5)g=0.15), (x15

(5)g=40.5; 
u15

(5)g=0.125), (x16
(5)g=41; u16

(5)g=0.10), (x17
(5)g=42; u17

(5)g=0)
The mean utilities must be calculated using (53) and 

(54). For example, let us fi nd I3
p,(5). Using (53), ibeg=5, be-

cause x5
(5)g=x3

(5)=33, and iend=7, because x7
(5)g=x4

(5)g=34.5. 
Then the mean utility I3

p,(5) may be calculated using the fi rst

line of (54), because x4
(5)> x3

(5): I3
p,(5)=2(34.5-33)[(34-33)

(0.3+0.15)+(34.5-34)(0.425+0.3)]. 

In the same way, we can fi nd all mean utilities: I1
p,(5)=0.0425,  

I2
p,(5) =0.1075, I3

p,(5) =0.2708, I4
p,(5) =0.5792, I5

p,(5) =0.6167,  
I6

p,(5) =0.35, I7
p,(5) =0.1625, I8

p,(5) =0.0708. Note that since the 
abscissas are diff erent, we will always use the upper line of 
(54) for the mean utilities. 

B) Calculation of Wald expected utility
According to step 3 of Simplifi ed Algorithm 1 the 

inner quantiles Fi
W,(5) for i=2, 3,…,8 can be found by solv-

       1       
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ing the following task of linear programming: minimize 
-0.065F2

W,(5) -0.1633F3
W,(5) -0.3083F4

W,(5) -0.0375F5
W,(5) 

+0.2667F6
W,(5) +0.1875F7

W,(5) +0.0917F8
W,(5) under the follow-

ing 3z5–5=22 linear constraints: 0≤F2
W,(5)≤F3

W,(5)≤...≤F8
W,(5)≤1, 

0.07≤F2
W,(5)≤0.13, 0.23≤F3

W,(5)≤0.31, 0.41≤F4
W,(5)≤0.51, 

0.51≤F5
W,(5)≤0.65, 0.68≤F6

W,(5)≤0.80, 0.76≤F7
W,(5)≤0.88, 

0.85≤F8
W,(5)≤0.95. This task was solved using the linprog 

function in MATLAB with the following results: F2
W,(5)=0.13,  

F3
W,(5)=0.31, F4

W,(5)=0.51, F5
W,(5)=0.65, F6

W,(5)=0.68, 
F7

W,(5)=0.76, F8
W,(5)=0.85. 

So F5
pR(.) is approximated with F5

pW(.) on the nodes 
(x1

(5)=30; F1
W,(5)=0), (x2

(5)=31.5; F2
W,(5)=0.13), (x3

(5)=33; 
F3

W,(5)=0.31), (x4
(5)=34.5; F4

W,(5)=0.51), (x5
(5)=36; F5

W,(5)=0.65), 
(x6

(5)=37.5; F6
W,(5)=0.68), (x7

(5)=39; F7
W,(5)=0.76), (x8

(5)=40.5;  
F8

W,(5) =0.85), (x9
(5)=42; F9

W,(5)=1). The graphics of the F5
pW(.)

and its density are given on fi gure 1. Then g5
pfr is approximat-

ed using the 1-D pW-GL-I – g5
pW =<F5

pW(x); x>. Using (52), 
the expected utility of the pW-GL-I is E5

pW(u|F5
pW)=0.2319, 

which is the p-Wald expected utility of g5
pfr (see fi gure 1). 

C) Calculation of maximax expected utility
Using trivial modifi cation of the Simplifi ed Algorithm 

1, the inner quantiles Fi
¬W,(5) for i=2, 3, …, 8 can be found by 

solving the following task of linear programming: 
minimize 

under the following 3z5–5=22 linear constraints: 0≤ 
F2

¬W,(5)≤F3
¬W,(5)≤...≤ F8

¬W,(5)≤1, 0.07≤ F2
¬W,(5)≤0.13, 0.23≤ 

F3
¬W,(5)≤0.31, 0.41≤ F4

¬W,(5)≤0.51, 0.51≤ F5
¬W,(5)≤0.65, 0.68≤ 

F6
¬W,(5)≤0.80, 0.76≤ F7

¬W,(5)≤0.88, 0.85≤ F8
¬W,(5)≤0.95. This task 

was solved using the linprog function in MATLAB with the 
following results: F2

¬W,(5)=0.07, F3
¬W,(5)=0.23, F4

¬W,(5)=0.41, 
F5

¬W,(5)=0.51, F6
¬W,(5)=0.80, F7

¬W,(5)=0.88, F8
¬W,(5)=0.95. So 

F5
pR(.) is approximated with F5

p¬W(.) on the nodes (x1
(5)=30; 

F1
¬W,(5)=0), (x2

(5)=31.5; F2
¬W,(5)=0.07), (x3

(5)=33; F3
¬W,(5)=0.23), 

(x4
(5)=34.5; F4

¬W,(5)=0.41), (x5
(5)=36; F5

¬W,(5)=0.51), (x6
(5)=37.5;  

F6
¬W,(5) =0.80), (x7

(5)=39; F7
¬W,(5)=0.88), (x8

(5)=40.5; 
F8

¬W,(5)=0.95), (x9
(5)=42; F9

¬W,(5)=1). The graphics of the 
F5

pW(.) and its density are given on fi gure 2. The expected 
utility of the p¬W-GL-I may be calculated using a trivial 
modifi cation of (52):

Using the above formula, we fi nd the expected utility 
of the p¬W-GL-I to be E5

p¬W(u|F5
p¬W) =0.3486, which is the 

maximax expected utility of the  g5
pfr (see fi gure 2)

D) Calculation of Hurwiczα expected utility
Here, the pessimism index α=0.7. Using trivial modifi -

cation of the Simplifi ed Algorithm 1, the inner quantile indices 
can be calculated using (63): F2

H0.7=0.7F2
W,(5)+(1-0.7)F2

¬W(5)=
=0.7×0.13+0.3×0.07=0.112, F3

H0.7=0.286, F4
H0.7=0.48, 

F5
H0.7=0.608, F6

H0.7=0.716, F7
H0.7=0.796, F8

H0.7=0.88. 

Then F5
pR(.) is approximated by F5

pH0.7(.) on the nodes 
(x1

(5)=30; F1
H0.7,(5)=0), (x2

(5)=31.5; F2
H0.7,(5)=0.112), (x3

(5)=33; 
F3

H0.7,(5)=0.286), (x4
(5)=34.5; F4

H0.7,(5)=0.48), (x5
(5)=36; 

F5
H0.7,(5) =0.608), (x6

(5)=37.5; F6
H0.7,(5)=0.716), (x7

(5)=39; 
F7

H0.7,(5)=0.796), (x8
(5)=40.5; F8

H0.7,(5)=0.88), (x9
(5)=42; 

F9
H0.7,(5)=1). The graphics of the F5

pH0.7(.) and its density 
are given on fi gure 3. Then g5

pfr is approximated using the 
one-dimensional pH0.7-GL-I – g5

pH0.7=<F5
pH0.7(.); x>. The 

expected utility of the p H0.7-GL-I may be calculated using 
another trivial modifi cation of (52):

Using the above formula, we fi nd the expected utility 
of the p H0.7-GL-I to be E5

pH0.7(u|F5
pH0.7) =0.2669, which is 

the Hurwicz0.7 expected utility of the g5
pfr (see fi gure 3). 

4.2. Example 2

A) Setup
Let’s analyze the 1-D random variable X, which is 

the investment in USD in a home heating system, where 
X takes values in the interval [4650; 5150]. The preferenc-
es of the DM over the set of prizes are monotonically de-
creasing. Let us discuss the seventh alternative (k=7) in the 
set of lotteries L. Let a p-ribbon CDF F7

pR(.) is constructed 
over the values of X based on nine elicited inner quantile 
indices: (x1

(7)=4650; F1
d,(7)=F1

u,(7)=0), (x2
(7)=4700; F2

d,(7)=0.11, 
F2

u,(7)=0.15), (x3
(7)=4750; F3

d,(7)=0.37, F3
u,(7)=0.44), 

(x4
(7)=4800; F4

d,(7)=0.52, F4
u,(7)=0.62), (x5

(7) =4850; F5
d,(7)=0.63, 

F5
u,(7)=0.75), (x6

(7)=4900; F6
d,(7)=0.73, F6

u,(7)=0.87), 
(x7

(7)=4950; F7
d,(7)=0.85, F7

u,(7)=0.95), (x8
(7)=5000; F8

d,(7)=0.93, 
F8

u,(7)=0.97), (x9
(7)=5050; F9

d,(7)=0.96, F9
u,(7)=0.98), (x10

(7) 
=5100; F10

d,(7) =0.97, F10
u,(7)=0.99), (x11

(7)=5150; F11
d,(7)=

F11
u,(7)=1). The p-ribbon F7

pR(.) defi nes the p-fuzzy-rational 
GL-I – g7

pfr= <F7
pR(x); x>. 

The monotonically decreasing utility function of the 
DM in the interval [0; 9000] is constructed on fi ve inner 
utility quantile indices: u2=0.8, u3=0.65, u4=0.5, u5=0.35, 
u6=0.20 and their utility quantiles were elicited as follows:

The utility function is arctan approximated on the 
elicited nodes using (23), as demonstrated in [Nikolova et 
al., 2018]. The optimal parameters of the analytical utility 
function are xd=0, xu=9000, x0=3982, a=4e–4. The resulting 
utility function is: 
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    5 5
15 1540.5; 0.125g gx u  ,     5 5

16 1641; 0.10g gx u  , 

    5 5
17 1742; 0g gx u  .  

The mean utilities must be calculated using (53) and 

(54). For example, let us find  , 5
3
pI . Using (53), ibeg=5, 

because    5 5
5 3  =33gx x , and iend=7, because 

   5 5
7 4  =34.5gx x . Then the mean utility  , 5

3
pI  may be 

calculated using the first line of (54), because     5 5
4 3>x x : 

 
 

, 5
3

1
2 34.5 33

pI


. In the same way, we can find all mean utilities:  , 5
1
pI

=0.0425,  , 5
2
pI =0.1075,  , 5

3
pI =0.2708,  , 5

4
pI =0.5792, 

 , 5
5
pI =0.6167,  , 5

6
pI =0.35,  , 5

7
pI =0.1625,  , 5

8
pI =0.0708. 

Note that since the abscissas are different, we will always 
use the upper line of (54) for the mean utilities.  

 
B) Calculation of Wald expected utility 
According to step 3 of Simplified Algorithm 1 the 

inner quantiles  , 5W
iF  for i=2, 3,…,8 can be found by 

solving the following task of linear programming:  
minimize 

       

     

, 5 , 5 , 5 , 5
52 3 4

, 5 , 5 , 5
76 8

0.065 0.1633 0.3083 0.0375

0.2667 0.1875 0.0917

W W W W

W W W

F F F F

F F F
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under the following 3z5–5=22 linear constraints:  
     , 5 , 5 , 5

2 3 80 1W W WF F F     , 
 , 5

20.07 0.13WF  ,  , 5
30.23 0.31WF  , 

 , 5
40.41 0.51WF  ,  , 5

50.51 0.65WF  , 
 , 5

60.68 0.80WF  ,  , 5
70.76 0.88WF  , 

 , 5
80.85 0.95WF  . This task was solved using the linprog 

function in MATLAB with the following results:  , 5
2
WF

=0.13,  , 5
3
WF =0.31,  , 5

4
WF =0.51,  , 5

5
WF =0.65,  , 5

6
WF

=0.68,  , 5
7
WF =0.76,  , 5

8
WF =0.85.  

So  5 .pRF  is approximated with  5 .pWF  on the nodes 

(  5
1x =30;  , 5

1
WF =0), (  5

2x =31.5;  , 5
2
WF =0.13), (  5

3x =33; 
 , 5

3
WF =0.31), (  5

4x =34.5;  , 5
4
WF =0.51), (  5

5x =36;  , 5
5
WF

=0.65), (  5
6x =37.5;  , 5

6
WF =0.68), (  5

7x =39;  , 5
7
WF =0.76), 

(  5
8x =40.5;  , 5

8
WF =0.85), (  5

9x =42;  , 5
9
WF =1). The 

graphics of the  5 .pWF  and its density are given on figure 1. 

Then 5
pfrg  is approximated using the 1-D pW-GL-I – 5

pWg

=<  5
pWF x ; x>. Using (52), the expected utility of the pW-

GL-I is 5 5( | )pW pWE u F =0.2319, which is the p-Wald 

expected utility of 5
pfrg  (see fig. 1).  

C) Calculation of maximax expected utility 
Using trivial modification of the Simplified Algorithm 

1, the inner quantiles  , 5W
iF  for i=2, 3, …, 8 can be found 

by solving the following task of linear programming: 
minimize 

     

     

 

, 5 , 5 , 5

, 5 , 5 , 5
5 76

, 5
8

0.065 0.1633 0.3083

0.0375 0.2667 0.1875
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under the following 3z5–5=22 linear constraints: 
     , 5 , 5 , 5

2 3 80 1W W WF F F       , 
 , 5

20.07 0.13WF  ,  , 5
30.23 0.31WF  , 

 , 5
40.41 0.51WF  ,  , 5

50.51 0.65WF  , 
 , 5

60.68 0.80WF  ,  , 5
70.76 0.88WF  , 

 , 5
80.85 0.95WF  . This task was solved using the 

linprog function in MATLAB with the following results: 
 , 5

2
WF =0.07,  , 5

3
WF =0.23,  , 5

4
WF =0.41,  , 5

5
WF

=0.51,  , 5
6

WF =0.80,  , 5
7

WF =0.88,  , 5
8

WF =0.95. So 

 5 .pRF  is approximated with  5 .p WF   on the nodes (  5
1x

=30;  , 5
1
WF =0), (  5

2x =31.5;  , 5
2

WF =0.07), (  5
3x =33; 

 , 5
3

WF =0.23), (  5
4x =34.5;  , 5

4
WF =0.41), (  5

5x =36; 
 , 5

5
WF =0.51), (  5

6x =37.5;  , 5
6

WF =0.80), (  5
7x =39; 

 , 5
7

WF =0.88), (  5
8x =40.5;  , 5

8
WF =0.95), (  5

9x =42; 
 , 5

9
WF =1). The graphics of the  5 .pWF  and its density are 

given on figure 2. The expected utility of the p W -GL-I 
may be calculated using a trivial modification of (52): 

        
1

, , , ,
11

2

( | )=
k

k

z
p k W k p k p kp W pR

i iik k z
i

E u F I F I I







   

Using the above formula, we find the expected utility 
of the p W -GL-I to be 5 5( | )p W p WE u F  =0.3486, which is 

the maximax expected utility of the 5
pfrg  (see figure 2) 

D) Calculation of Hurwiczα expected utility 
Here, the pessimism index 0.7  . Using trivial 

modification of the Simplified Algorithm 1, the inner 
quantile indices can be calculated using (63): 

     0.7 , 5 , 5 , 5
2 2 20.7 (1 0.7)H W WF F F   =0.7 0.13+0.3

 
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    5 5
15 1540.5; 0.125g gx u  ,     5 5

16 1641; 0.10g gx u  , 

    5 5
17 1742; 0g gx u  .  

The mean utilities must be calculated using (53) and 

(54). For example, let us find  , 5
3
pI . Using (53), ibeg=5, 

because    5 5
5 3  =33gx x , and iend=7, because 

   5 5
7 4  =34.5gx x . Then the mean utility  , 5

3
pI  may be 

calculated using the first line of (54), because     5 5
4 3>x x : 

 
 

, 5
3

1
2 34.5 33

pI


. In the same way, we can find all mean utilities:  , 5
1
pI

=0.0425,  , 5
2
pI =0.1075,  , 5

3
pI =0.2708,  , 5

4
pI =0.5792, 

 , 5
5
pI =0.6167,  , 5

6
pI =0.35,  , 5

7
pI =0.1625,  , 5

8
pI =0.0708. 

Note that since the abscissas are different, we will always 
use the upper line of (54) for the mean utilities.  

 
B) Calculation of Wald expected utility 
According to step 3 of Simplified Algorithm 1 the 

inner quantiles  , 5W
iF  for i=2, 3,…,8 can be found by 

solving the following task of linear programming:  
minimize 

       

     

, 5 , 5 , 5 , 5
52 3 4

, 5 , 5 , 5
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under the following 3z5–5=22 linear constraints:  
     , 5 , 5 , 5

2 3 80 1W W WF F F     , 
 , 5

20.07 0.13WF  ,  , 5
30.23 0.31WF  , 

 , 5
40.41 0.51WF  ,  , 5

50.51 0.65WF  , 
 , 5

60.68 0.80WF  ,  , 5
70.76 0.88WF  , 

 , 5
80.85 0.95WF  . This task was solved using the linprog 

function in MATLAB with the following results:  , 5
2
WF

=0.13,  , 5
3
WF =0.31,  , 5

4
WF =0.51,  , 5

5
WF =0.65,  , 5

6
WF

=0.68,  , 5
7
WF =0.76,  , 5

8
WF =0.85.  

So  5 .pRF  is approximated with  5 .pWF  on the nodes 

(  5
1x =30;  , 5

1
WF =0), (  5

2x =31.5;  , 5
2
WF =0.13), (  5

3x =33; 
 , 5

3
WF =0.31), (  5

4x =34.5;  , 5
4
WF =0.51), (  5

5x =36;  , 5
5
WF

=0.65), (  5
6x =37.5;  , 5

6
WF =0.68), (  5

7x =39;  , 5
7
WF =0.76), 

(  5
8x =40.5;  , 5

8
WF =0.85), (  5

9x =42;  , 5
9
WF =1). The 

graphics of the  5 .pWF  and its density are given on figure 1. 

Then 5
pfrg  is approximated using the 1-D pW-GL-I – 5

pWg

=<  5
pWF x ; x>. Using (52), the expected utility of the pW-

GL-I is 5 5( | )pW pWE u F =0.2319, which is the p-Wald 

expected utility of 5
pfrg  (see fig. 1).  

C) Calculation of maximax expected utility 
Using trivial modification of the Simplified Algorithm 

1, the inner quantiles  , 5W
iF  for i=2, 3, …, 8 can be found 

by solving the following task of linear programming: 
minimize 
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under the following 3z5–5=22 linear constraints: 
     , 5 , 5 , 5

2 3 80 1W W WF F F       , 
 , 5

20.07 0.13WF  ,  , 5
30.23 0.31WF  , 

 , 5
40.41 0.51WF  ,  , 5

50.51 0.65WF  , 
 , 5

60.68 0.80WF  ,  , 5
70.76 0.88WF  , 

 , 5
80.85 0.95WF  . This task was solved using the 

linprog function in MATLAB with the following results: 
 , 5

2
WF =0.07,  , 5

3
WF =0.23,  , 5

4
WF =0.41,  , 5

5
WF

=0.51,  , 5
6

WF =0.80,  , 5
7

WF =0.88,  , 5
8

WF =0.95. So 

 5 .pRF  is approximated with  5 .p WF   on the nodes (  5
1x

=30;  , 5
1
WF =0), (  5

2x =31.5;  , 5
2

WF =0.07), (  5
3x =33; 

 , 5
3

WF =0.23), (  5
4x =34.5;  , 5

4
WF =0.41), (  5

5x =36; 
 , 5

5
WF =0.51), (  5

6x =37.5;  , 5
6

WF =0.80), (  5
7x =39; 

 , 5
7

WF =0.88), (  5
8x =40.5;  , 5

8
WF =0.95), (  5

9x =42; 
 , 5

9
WF =1). The graphics of the  5 .pWF  and its density are 

given on figure 2. The expected utility of the p W -GL-I 
may be calculated using a trivial modification of (52): 
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Using the above formula, we find the expected utility 
of the p W -GL-I to be 5 5( | )p W p WE u F  =0.3486, which is 

the maximax expected utility of the 5
pfrg  (see figure 2) 

D) Calculation of Hurwiczα expected utility 
Here, the pessimism index 0.7  . Using trivial 
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DM in the interval [0; 9000] is constructed on five inner 
utility quantile indices: u2=0.8, u3=0.65, u4=0.5, u5=0.35, 
u6=0.20 and their utility quantiles were elicited as follows: 

2 2 2
d u

u u uˆ ˆ ˆx x ;x    [2000; 2600], 3 3 3
d u

u u uˆ ˆ ˆx x ;x    [3000; 

3600], 4 4 4
d u

u u uˆ ˆ ˆx x ; x    [3700; 4500], 5 5 5
d u

u u uˆ ˆ ˆx x ;x   

[4700; 5300], 6 6 6
d u

u u uˆ ˆ ˆx x ; x    [5800; 6200]. The utility 

function is arctan approximated on the elicited nodes using 
(23), as demonstrated in [Nikolova et al., 2018]. The 
optimal parameters of the analytical utility function are 
xd=0, xu=9000, x0=3982, a=4e–4. The resulting utility 
function is:  
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The approximated utility function and its 
corresponding local risk aversion function (in this case 
interpret as local risk proneness) are given in figure 4. It 
shows that the approximation is acceptable because the 
utility function passes through the uncertainty interval of 
each of the nodes.  

The task is to approximate  7 .pRF  using Wald, 
maximax and Hurwicz0.7 criteria and then calculate Wald, 
maximax and Hurwicz0.7 expected utility of 7

pfrg . 
Because we have decreasing arctan utility, the three 

problems stated will be solved using the simplified 
Algorithm 6 and two trivial modifications of it. As long as 
the second and third step do not depend on the 

approximation of the CDF, then the constants  7
iC , for 

i=1,2, …, 10, decrA  and decrB can be calculated for all three 

tasks:  7
1C =13.5201,  7

2C =14.4439,  7
3C =15.3576,  7

4C

=16.2609,  7
5C =17.1533,  7

6C =18.0344,  7
7C =18.9040, 

 7
8C =19.7618,  7

9C =20.6074,  7
10C =21.4407, decrA =-

0.4720, decrB =0.5232. 
B) Calculation of Wald expected utility 
According to step 1 of simplified algorithm 6, the 

inner quantile indices are set to their lower bounds using 

(60):  , 7
2
WF =0.11,  , 7

3
WF =0.37,  , 7

4
WF =0.52,  , 7

5
WF

=0.63,  , 7
6
WF =0.73,  , 7

7
WF =0.85,  , 7

8
WF =0.93,  , 7

9
WF

=0.96,  , 7
10
WF =0.97. Then  7 .pRF  is approximated by 

 7 .pWF  on the nodes (  7
1x =4650;  , 7

1
WF =0), (  7

2x =4700; 
 , 7

2
WF =0.11), (  7

3x =4750;  , 7
3
WF =0.37), (  7

4x =4800; 
 , 7

4
WF =0.52), (  7

5x =4850;  , 7
5
WF =0.63), (  7

6x =4900; 
 , 7

6
WF =0.73), (  7

7x =4950;  , 7
7
WF =0.85), (  7

8x =5000; 
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The approximated utility function and its correspond-
ing local risk aversion function (in this case interpret as local 
risk proneness) are given in fi gure 4. It shows that the ap-
proximation is acceptable because the utility function passes 
through the uncertainty interval of each of the nodes. 

The task is to approximate F7
pR(.) using Wald, maxi-

max and Hurwicz0.7 criteria and then calculate Wald, maxi-
max and Hurwicz0.7 expected utility of g7

pfr.
Because we have decreasing arctan utility, the three 

problems stated will be solved using the simplifi ed Algo-
rithm 6 and two trivial modifi cations of it. As long as the 
second and third step do not depend on the approximation of 
the CDF, then the constants Ci

(7), for i=1,2, …, 10, Adecr and 
Bdecr can be calculated for all three tasks: C1

(7)=13.5201, C2
(7) 

=14.4439, C3
(7)=15.3576, C4

(7)=16.2609, C5
(7)=17.1533, C6

(7) 

=18.0344, C7
(7)=18.9040, C8

(7)=19.7618, C9
(7)=20.6074, C10

(7) 

=21.4407, Adecr=-0.4720, Bdecr=0.5232.
B) Calculation of Wald expected utility
According to step 1 of simplifi ed algorithm 6, the in-

ner quantile indices are set to their lower bounds using (60): 
F2

W,(7)=0.11, F3
W,(7)=0.37, F4

W,(7)=0.52, F5
W,(7)=0.63, F6

W,(7)=0.73, 
F7

W,(7) =0.85, F8
W,(7)=0.93, F9

W,(7)=0.96, F10
W,(7)=0.97. Then 

F7
pR(.) is approximated by F7

pW(.) on the nodes (x1
(7)=4650; 

F1
W,(7)=0), (x2

(7)=4700; F2
W,(7)=0.11), (x3

(7)=4750; F3
W,(7)=0.37), 

(x4
(7)=4800; F4

W,(7)=0.52), (x5
(7)=4850; F5

W,(7)=0.63), 
(x6

(7)=4900; F6
W,(7)=0.73), (x7

(7)=4950; F7
W,(7)=0.85), (x8

(7)=5000; 
F8

W,(7)=0.93), (x9
(7)=5050; F9

W,(7)=0.96), (x10
(7)=5100; 

F10
W,(7)=0.97), (x11

(7)=5150; F11
W,(7)=1). The graphics of the F7

p-

W(x) and its density are given on fi gure 5. Then g7
pfr is approx-

imated using the one-dimensional pW-GL-I – g7
pW=<F7

pW(x); 
x>. Using (62), the expected utility of the pW-GL-I is E7

pW(u| 
F7

pW)=0.3704, which is the Wald-expected utility of the g7
pfr 

(see fi gure 5). Note that using (62), the second member of the 
equation is skipped because the quantiles are diff erent. 

C) Calculation of maximax expected utility
Using trivial modifi cation of the Simplifi ed Algorithm 

6, the inner quantile indices are set to their upper bounds:  
F2

¬W,(7) =0.15, F3
¬W,(7)=0.44, F4

¬W,(7)=0.62, F5
¬W,(7)=0.75, 

F6
¬W,(7) =0.87, F7

¬W,(7)=0.95, F8
¬W,(7)=0.97, F9

¬W,(7)=0.98, 
F10

¬W,(7)=0.99. Then F7
pR(.) is approximated by F7

p¬W(.) on 
the nodes (x1

(7)=4650; F1
¬W,(7)=0), (x2

(7)=4700; F2
¬W,(7)=0.15), 

(x3
(7)=4750; F3

¬W,(7)=0.44), (x4
(7)=4800; F4

¬W,(7)=0.62), 
(x5

(7)=4850; F5
¬W,(7)=0.75), (x6

(7)=4900; F6
¬W,(7)=0.87), 

(x7
(7)=4950; F7

¬W,(7)=0.95), (x8
(7)=5000; F8

¬W,(7)=0.97), 
(x9

(7)=5050; F9
¬W,(7)=0.98), (x10

(7)=5100; F10
¬W,(7)=0.99), 

(x11
(7)=5150; F11

¬W,(7)=1). The graphics of the F7
p¬W(.) and its 

density are given on fi gure 6. Then g7
pfr is approximated us-

ing the one-dimensional p¬W-GL-I – g7
p¬W=<F7

p¬W(.);x>. 
The expected utility of the p -GL-I may be calculated using 
a trivial modifi cation of (62):

Using the above formula, we fi nd the expected utility 
of the p¬W-GL-I to be E7

p¬W(u|F7
p¬W)=0.3758, which is the 

maximax expected utility of the g7
pfr (see fi gure 6). Note that 

in the above formula, the second member of the equation is 
skipped because the quantiles are diff erent.

D) Calculation of Hurwicz0.7 expected utility
Here, the pessimism index α=0.7. Using trivial modifi -

cation of the Simplifi ed Algorithm 6, the inner quantile indices 
can be calculated using (63): F2

H0.7,(7)=0.7F2
W,(7)+(1-0.7) F2

¬W,(7)

=0.7×0.11+0.3×0.15=0.122, F3
H0.7,(7)=0.391, F4

H0.7,(7)=0.55,  
F5

0.7,(7)=0.666, F6
H0.7,(7)=0.786, F7

H0.7,(7)=0.88, F8
H0.7,(7)=0.942, 

F9
H0.7,(7)=0.966, F10

H0.7,(7)=0.976. Then F7
pR(.) is approximated 

by F7
pH0.7(.) on the nodes (x1

(7)=4650; F1
H0.7,(7)=0), (x2

(7)=4700;  
F2

H0.7,(7) =0.122), (x3
(7)=4750; F3

H0.7,(7)=0.391), (x4
(7)=4800;  

F4
H0.7,(7) =0.55), (x5

(7)=4850; F5
H0.7,(7)=0.666), (x6

(7)=4900;  
F6

H0.7,(7) =0.786), (x7
(7)=4950; F7

H0.7,(7)=0.88), (x8
(7)=5000; 

F8
H0.7,(7)=0.942), (x9

(7)=5050; F9
H0.7,(7)=0.966), (x10

(7)=5100;  
F10

H0.7,(7) =0.976), (x11
(7)=5150; F11

H0.7,(7)=1). The graphics 
of the F7

pH0.7(.) and its density are given on fi gure 7. Then   
is approximated using the one-dimensional pH0.7-GL-I – 
g7

pH0.7=<F7
pH0.7(.); x>. The expected utility of the p H0.7-GL-I 

may be calculated using another trivial modifi cation of (62):

Using the above formula, we fi nd the expected utility 
of the p H0.7-GL-I to be E7

pH0.7(u|F7
pH0.7) =0.3722, which is 

the Hurwicz0.7 expected utility of the g7
pfr (see fi gure 7). Note 

that in the above formula, the second member of the equa-
tion is skipped because the quantiles are diff erent.

5. Conclusion

We discussed alternatives under risk modelled as GL-I, 
where uncertainty was modeled using p-ribbon distributions 
(i.e. constructed on interval estimates of quantile indices of 
a fuzzy-rational DM). We developed procedures to approx-
imate such ribbon distributions with classical CDFs using 
three criteria under strict uncertainty. Subsequently, the 
procedures also demonstrated how to rank the p-fuzzy-ra-
tional GL-Is according to the Wald, maximax and Hurwiczα 
criteria. Those procedures also adapted to the type of pref-
erences of the DM (monotonically increasing/decreasing or 
non-monotonic) and the way the utility function was con-
structed (using partial linear interpolation or arctan approx-
imation). Then we provided simplifi ed algorithms to rank 
p-fuzzy-rational GL-I using the Wald expected utility crite-
rion and also derived the maximax and Hurwiczα expected 
utility criteria using trivial modifi cations. The numerical ex-
amples illustrated cases of non-monotonic partially linearly 
interpolated utility and of decreasing arctan approximated 
utility functions. The choice of α=0.7 assumed a pessimis-
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     0.7 , 7 , 7 , 7
2 2 20.7 (1 0.7)H W WF F F   =0.7 0.11+0.3

0.15=0.122,  0.7 , 7
3
HF =0.391,  0.7 , 7

4
HF =0.55,  0.7 , 7

5
HF

=0.666,  0.7 , 7
6
HF =0.786,  0.7 , 7

7
HF =0.88,  0.7 , 7

8
HF =0.942, 

 0.7 , 7
9
HF =0.966,  0.7 , 7

10
HF =0.976. Then  7 .pRF  is 

approximated by  0.7
7 .pHF  on the nodes (  7

1x =4650; 
 0.7 , 7

1
HF =0), (  7

2x =4700;  0.7 , 7
2
HF =0.122), (  7

3x =4750; 
 0.7 , 7

3
HF =0.391), (  7

4x =4800;  0.7 , 7
4
HF =0.55), (  7

5x

=4850;  0.7 , 7
5
HF =0.666), (  7

6x =4900;  0.7 , 7
6
HF =0.786), (

 7
7x =4950;  0.7 , 7

7
HF =0.88), (  7

8x =5000;  0.7 , 7
8
HF =0.942), 

(  7
9x =5050;  0.7 , 7

9
HF =0.966), (  7

10x =5100;  0.7 , 7
10
HF

=0.976),  
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 , 7
8
WF =0.93), (  7

9x =5050;  , 7
9
WF =0.96), (  7

10x =5100; 
 , 7

10
WF =0.97), (  7

11x =5150;  , 7
11
WF =1). The graphics of the 

 7
pWF x  and its density are given on figure 5. Then 7

pfrg  is 

approximated using the one-dimensional pW-GL-I – 7
pWg

=<  7
pWF x ; x>. Using (62), the expected utility of the pW-

GL-I is 7 7( | )pW pWE u F =0.3704, which is the Wald-expected 

utility of the 7
pfrg  (see figure 5). Note that using (62), the 

second member of the equation is skipped because the 
quantiles are different.  

C) Calculation of maximax expected utility 
Using trivial modification of the Simplified Algorithm 

6, the inner quantile indices are set to their upper bounds: 
 , 7

2
WF =0.15,  , 7

3
WF =0.44,  , 7

4
WF =0.62,  , 7

5
WF

=0.75,  , 7
6

WF =0.87,  , 7
7

WF =0.95,  , 7
8

WF =0.97, 
 , 7

9
WF =0.98,  , 7

10
WF =0.99. Then  7 .pRF  is 

approximated by  7 .p WF   on the nodes (  7
1x =4650; 

 , 7
1

WF =0), (  7
2x =4700;  , 7

2
WF =0.15), (  7

3x =4750; 
 , 7

3
WF =0.44), (  7

4x =4800;  , 7
4

WF =0.62), (  7
5x =4850; 

 , 7
5

WF =0.75), (  7
6x =4900;  , 7

6
WF =0.87), (  7

7x =4950; 
 , 7

7
WF =0.95), (  7
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8

WF =0.97), (  7
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9

WF =0.98), (  7
10x =5100;  , 7

10
WF =0.99), (  7

11x =5150; 
 , 7

11
WF =1). The graphics of the  7 .p WF   and its density 

are given on figure 6. Then 7
pfrg  is approximated using the 

one-dimensional p W -GL-I – 7
p Wg  =<  7 .p WF  ; x>. The 

expected utility of the p W -GL-I may be calculated using 
a trivial modification of (62): 
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Using the above formula, we find the expected utility 

of the p W -GL-I to be 7 7( | )p W p WE u F  =0.3758, which is 

the maximax expected utility of the 7
pfrg  (see figure 6). 

Note that in the above formula, the second member of the 
equation is skipped because the quantiles are different. 

D) Calculation of Hurwicz0.7 expected utility 
Here, the pessimism index 0.7  . Using trivial 

modification of the Simplified Algorithm 6, the inner 

quantile indices can be calculated using (63): 
     0.7 , 7 , 7 , 7

2 2 20.7 (1 0.7)H W WF F F   =0.7 0.11+0.3
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3
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4
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5
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=0.666,  0.7 , 7
6
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7
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8
HF =0.942, 

 0.7 , 7
9
HF =0.966,  0.7 , 7

10
HF =0.976. Then  7 .pRF  is 

approximated by  0.7
7 .pHF  on the nodes (  7

1x =4650; 
 0.7 , 7

1
HF =0), (  7
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6
HF =0.786), (
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7
HF =0.88), (  7
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8
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(  7
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9
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10x =5100;  0.7 , 7
10
HF

=0.976),  

(  7
11x =5150;  0.7 , 7

11
HF =1). The graphics of the  0.7

7 .pHF  and 

its density are given on figure 7. Then 7
pfrg  is approximated 

using the one-dimensional pH0.7-GL-I – 0.7
7
pHg =<  0.7

7 .pHF ; 
x>. The expected utility of the p H0.7-GL-I may be 
calculated using another trivial modification of (62): 
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Using the above formula, we find the expected utility 

of the p H0.7-GL-I to be 0.7 0.7
7 7( | )pH pHE u F =0.3722, which is 

the Hurwicz0.7 expected utility of the 7
pfrg  (see fig. 7). Note 

that in the above formula, the second member of the 
equation is skipped because the quantiles are different. 

 
5. Conclusion Подзаглавие І степен 

We discussed alternatives under risk modelled as GL-
I, where uncertainty was modeled using p-ribbon 
distributions (i.e. constructed on interval estimates of 
quantile indices of a fuzzy-rational DM). We developed 
procedures to approximate such ribbon distributions with 
classical CDFs using three criteria under strict uncertainty. 
Subsequently, the procedures also demonstrated how to rank 
the p-fuzzy-rational GL-Is according to the Wald, maximax 
and Hurwiczα criteria. Those procedures also adapted to the 
type of preferences of the DM (monotonically 
increasing/decreasing or non-monotonic) and the way the 
utility function was constructed (using partial linear 
interpolation or arctan approximation). Then we provided 
simplified algorithms to rank p-fuzzy-rational GL-I using 
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tic DM and justifi ed results like those of the Wald expected 
utility.

The Hurwiczα approach to approximate the p-ribbon 
functions makes the probabilities dependent on the prefer-
ences of the DM. Although this is not compliant with the 
expected utility paradigm, the DM who uses the Hurwiczα 
criterion is “probabilistically sophisticated non-expected 
utility maximizer” as suggested in [Machina, Schmeidler, 
1992]. Similar ideas about preference-dependent probabil-
ities is also suggested by [Augustin, 2001].

Our earlier work [Tenekedjiev, Nikolova, 2008] dis-
cussed the application of the same criteria to rank fuzzy-ra-
tional alternatives, but for the case of ordinary lotteries. As in-
dicated there, the use of Wald, maximax and Hurwiczα ¬wass 
justifi ed as these methods (while not perfectly rational) are 
well approbated descriptive techniques whose properties are 
well known. It was also clarifi ed that the standard approach 
to tasks where uncertainties are elicited in an interval form 
would be to replace the intervals by their mid points (fol-
lowing various approaches). In our task of GL-I9 this would 
mean to linearly interpolate the CDFs on the midpoints of the 
elcitied intervals. The drawbacks of this approach outlined in 
[Tenekedjiev, Nikolova, 2008] will not appear for the case of 
continuous probability distributions. However, the main issue 
would remain that we would artifi cially replace the uncertain-
ty interval by a point estimate. On one hand this would im-
pose high precision of estimates, which is not representative 
of the opinion of a fuzzy-rational DM. On the other, we would 
deprive the analysis of the information that the uncertainty 
interval carries, as it demonstrates what the DM does or does 
not know. Hence a strong side of our approach is that we can 
solve tasks with partially quantifi ed uncertainty while utiliz-
ing the full volume of information about the uncertainty. Our 
criteria can smoothly transition from tasks of strict uncertainty 
(i.e. when uncertainty intervals are very wide) to tasks under 
risk (i.e. when uncertainty intervals are rather tight). Another 
alternative solution would need to rely on the information-gap 
theory to solve tasks under severe uncertainty [Ben-Haim, 
2001]. However, this traditionally produces higher ambiguity 
in the solution. 

Another strong side of our study is that in addition to 
the standard elements in any decision-making situation (de-
gree of belief, value system and risk attitude) we included 
the pessimism-optimism of the DM as a tool to approximate 
the p-ribbon functions and rank the p-fuzzy-rational GL-Is.
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Let a partially linearly interpolated CDF is given in the form (17). Let the utility function is arctan-approximated and 
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Appendix – Proof of Formulae (29) and (30) Подзаглавие І степен 

Let a partially linearly interpolated CDF is given in the form (17). Let the utility function is arctan-approximated and 
given in (28). Then the expected utility of the GL-I in (15) is 
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This proves (A2).  
In the case of partially linearly interpolated CDF, the expected utility integral is given in (18) as shown in [Nikolova et 

al., 2010a]. We can plug the utility (28) into (18) and use (A2). So: 
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In the case of partially linearly interpolated CDF, the expected utility integral is given in (18) as shown in [Nikolova et 
al., 2010a]. We can plug the utility (28) into (18) and use (A2). So:

This proves (A1).
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This proves (A1). 
 
  

 

Figure 1. Graphics of  5
pWF x , density 

(PDF) and utility function of the DM  
over the values in X from Example 1  

in the interval [30;42] 

Figure 2. Graphics of  5
p WF x , density 

(PDF) and utility function of the DM  
over the values in X from Example 1  

in the interval [30;42] 

Figure 3. Graphics of  0 7
5

.pHF x , density 

(PDF) and utility function of the DM  
over the values in X from Example 1  

in the interval [30;42] 
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This proves (A2).  
In the case of partially linearly interpolated CDF, the expected utility integral is given in (18) as shown in [Nikolova et 
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Figure 1. Graphics of F5
pW(x), density 

(PDF) and utility function of the DM  
over the values in X from Example 1  

in the interval [30;42]

Figure 5. Graphics of F7
pW(x), density 

(PDF) and utility function of the DM  
over the values in X from Example 2  

in the interval [4650; 5150]

Figure 2. Graphics of F5
p¬W(x), density 

(PDF) and utility function of the DM  
over the values in X from Example 1  

in the interval [30;42]

Figure 6. Graphics of F7
p¬W(x), density 

(PDF) and utility function of the DM  
over the values in X from Example 2  

in the interval [4650; 5150]

Figure 3. Graphics of F5
pH0.7(x), density 

(PDF) and utility function of the DM  
over the values in X from Example 1  

in the interval [30;42]

Figure 7. Graphics of F7
pH0.7(x), density 

(PDF) and utility function of the DM  
over the values in X from Example 2  

in the interval [4650; 5150]

Figure 4. Approximated utility function and its corresponding local risk 
aversion function (in this case interpret as local risk proneness) for Example 2
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