
Information Technologies 3 2019 26
and Control

Online ISSN: 2367-5357

DOI: 10.7546/itc-2019-0014

GPU-In-The-Loop Simulation

of Linear Controllers

J. Kralev

Key Words: GPU-in-the-loop; computation parallelization; state-

space controller, GPGPU.

Abstract. Many practical computational tasks require processing

of big data sets. When calculation cannot be performed fast

enough multithread parallelization is most obvious solution.

However interdependence of intermediate results can limit the

parallelization of the computational problem. In modern control

theory a key mathematical model is the state-space

representation. The aim of the present paper is to demonstrate

how such a model can be implemented on a conventional

graphical processing unit without disturbing the response of the

respective closed-loop system where the model is participating.

1. Introduction

Simulations of complex dynamical systems require

distributed computational architecture. There are many

approaches for distributed computing aiming to extend the

capabilities that a single central processing unit (CPU) can

offer. Some examples are pear-to-pear (P2P), cluster, grid,

cloud or jungle computing. These methods can be

implemented over multicore, network or custom FPGA

architectures. An easy accessible and relatively cheap

multicore architecture is the graphical processing unit

(GPU), which is a hardware platform dedicated to

processing of 3D video primitives in order to produce

realistic video output in real time. GPU is a single

instruction multiple data (SIMD) architecture, which

allows a single computational algorithm to be executed on

several distinct data sets simultaneously (figure 1).

Modern GPU produced by nVidia and AMD hosts

several hundreds of processing threads. These resources

are programmable to a certain level with the help of

specialized shader languages primary designed to allow

variety of visual effects, such as reflection of light by a

soap bubble. Programmable shading is used to achieve

cinematic level realism which is the ultimate goal in

computer graphics. The parallel array of processors of

modern GPU is programmable in C language with the help

of application programming interface (API) for graphics.

The aim of graphics system is to produce an image from a

geometrical description of a scene with fast enough refresh

rate. The GPU processes geometric data through a

hardware pipeline. The scene is a collection of geometric

primitives, lights, object materials, viewpoints with

position and orientation.

Figure 1. Single instruction multiple data (SIMD)

vs. scalar architectures. Courtesy of Intel® Inc.

Recently GPUs begin to find application also as a

general-purpose parallel computation engines or GPGPU

[4]. They allow extremely high arithmetic throughput and

streaming memory bandwidth but with considerable

latency between individual computations since final

images are only displayed as fast as 16 ms. CPUs are

optimized for low latency and GPUs are optimized for high

throughput. A single kernel unit from the GPU array

achieves a sustained 330 billion floating-point operations

per second (Gflops). The GPU’s specialized architecture is

not well suited to every algorithm [3]. Many applications

are inherently serial and are characterized by incoherent

and unpredictable memory access. Nonetheless, many

important problems require significant computational

power.

The article proposes a certain technique to access

GPGPU capabilities of a desktop platform by Simulink®

environment. Standard Simulink® library does not support

bocks for GPU-in-the-loop processing. The present work

aims to run a particular state-space realization on GPU by

utilizing Microsoft Accelerated Massive Parallelism

(AMP) [2, 8]. AMP is C++ wrapper library which goal is

Information Technologies 3 2019 27
and Control

to accelerate execution of code by exploiting data-parallel

hardware. This library introduces specialized operators for

multi-dimensional algorithms. The AMP programming

model includes also multidimensional arrays, indexing,

memory transfer, tiling, mathematical function library and

a control of data transfers between CPU and GPU.

Mathematical models for many physical processes as

well as control theory which design the controllers for

them are extremely dependent on the ability to solve

systems of ordinary differential equations [1, 5]. Every

linear time invariant (LTI) system can be represented using

auxiliary state variables as

(1)
(1) () ()

() () ()

x k Ax k Bu k

y k Cx k Du k

  

 
,

where x is a N-dimensional vector of state-variables, u is

uN -dimensional vector of input variables, y is yN -

dimensional vector of output variables, A, B, C, D are

matrices with appropriate dimensions, k is the current time

instant and k + 1 is the consequent time instant. In order to

calculate the expression for one-step the computer must

execute 2

u y u yN NN NN N N   multiplications and

   1 1u y uN N N N N N     summations. Obviously

if these operations are executed in parallel they will be

completed faster than a serial execution. The paper is

organized as follows. Section II present the Simulink®

block design, Section III is about related AMP

implementation, Section IV present a practical example for

which developed block can be used which concludes with

the experimental results.

2. Simulink® block design

The interface between GPU and Simulink model is

based on a developed S-function block by the author to

support simulation of LTI systems represented in state-

space form (figure 2). During normal simulation the GPU

block behaves only as a placeholder in the diagram by

sourcing and sinking just a dummy signals. However after

code generation for general real-time (GRT) target the

GPU block is replaced with its actual AMP

implementation in C++ language. In this case the

simulation is running in External simulation mode when

the generated code is executed as a standalone application

and the Simulink block diagram works just as a frontend

presentation of the application runtime.

2.1. Code generation from block diagram

Simulink Coder (formerly Real-Time Workshop)

generates C and C++ code from Simulink diagrams,

Stateflow charts, and MATLAB functions. The generated

source code can be used for real-time and non real-time

applications such as simulation acceleration, rapid

prototyping, hardware-in-the-loop simulation, embedded

algorithm design, etc.

Figure 2. Block diagram with the developed GPU in the loop

block for simulation of LTI dynamical systems.

The Simulink model can be translated into suitable

description for the target hardware platform. This process

generates a sequence of intermediate representations of the

primary Simulink functional diagram. A key transition in

this process is the conversion from block diagram to C

language. Consequently, the generated code is integrated

with additional device driver libraries and compiled into a

standalone executable. Also the generated code can be

integrated with target specific routines to create a module

for some operating system. The process finishes with

compilation and loading into target platform. These

transformations of the original functional description are

required because Simulink model is more abstract form of

representation than target hardware platform can

understand. Code generation is controlled through

template-like configuration files. Figure 3 summarizes the

stages of the code generation process.

Figure 3. Generation of executable code

from Simulink block diagram

Target Language Compiler (TLC) is an intermediate

script language representing the translation from Simulink

graphical blocks to the target C code. Therefore each block

Information Technologies 3 2019 28
and Control

from the diagram needs a corresponding TLC file. When

S-function block is used the designer has to specify also its

TLC description in order to inline the block into target. A

dedicated RTW file (rtw for real-time workshop) contains

the representation of the Simulink model as a hierarchical

structure describing also the interconnection between

blocks and their parameters. This is the form which TLC

parser can read in order to produce C programs. The parser

has an access to each block input or output signal. This

information is necessary to properly reproduce block

function in C language.

The main TLC file for the target is the system target

file (STF) which is parsed when build command for the

model is invoked. It in turn invokes the block specific TLC

files. The STF also defines some target specific interface

for user interaction through Model Configuration Setting

dialog. For example one can turn on or turn off a particular

software future in the generated code. After the code is

generated the process of compilation and linking is

controlled by a template make file (TMF) also specific to

the selected target. The produced makefile from it is used

by a dedicated make tool which in turn invokes the target

toolchain.

2.2. Design of GPU_State_Space block

The block named GPU_State_Space from figure 2 is a

S-function block which is described by four files:

GPU_State_Space.c is S-function definition for normal

simulation mode, GPU_State_Space.tlc is TLC wrapper

which works as a template during the C code generation

for the block, GPU_Calc.cpp is the actual C++ AMP code

for SIMD processing of state-space realization,

GPU_Calc.h is the corresponding header file containing

declarations to be included in generated C code.

When some model blocks are CPU implemented and

others are GPU implemented it is appropriate to use

External simulation mode as opposite to Normal

simulation mode. In this mode the model is translated to C

code and then compiled to selected target which in the case

for GPU_state_space block would be generic real-time

(GRT) target. Figure 4 shows the target selection dialog

box, which allows for “exporting” the Simulink model to

various platforms. New targets can be created as well by

developing the respective STL and TMF templates. This

target platform used in this article is actually the host PC

where the user develops the model. Then the GRT

compiled model will be run as a standard console

application under MS Windows OS and the source

Simulink model serves only as a graphical user interface

for data recording and parameter tuning. External mode

simulation is started and controlled from dedicated dialog

box presented on figure 5. This dialog makes the

connection between the block diagram and the target and

controls the data acquisition options.

Figure 4. Target selection dialog box

Figure 5. External mode control panel

In normal simulation mode the GPU block from figure

2 is only a placeholder. It has defined input and output

ports with appropriate types to allow integration with the

data from the rest block in the model. The block is

introduced in the model a as S-function GPU_State_Space

which is a C program compiled as a MATLAB executable

(MEX) binary. Figure 6 contains the description of the

block for simulation mode. This S-function defines only

initialization routine about port data types and port size.

The input port is defined as a vector signal with uN

elements and the output port is a vector yN elements

which are single precision floating-point numbers. The S-

function is compiled with command mex

GPU_State_Space.c which generates the

GPU_State_Space.*mex* file.

The TLC file for the GPU block is summarized in

figure 7. TLC syntax is well documented in Mathworks

documents. Figure 7 defines the target implementation of

the block with respect to two functions. BlockTypeSetup

function includes GPU_Calc.h which declares AMP

dependent description of the block. The function Outputs is

invoked once in every sample interval during model

execution. There the parSS() function is called to calculate

the model transition from current state to the next. The

inputs and outputs of the AMP algorithm are implements

Information Technologies 3 2019 29
and Control

as the array u[] and y[]. On figure 7 the assigned TLC

placeholders are related to their actual values. For example

variable y[1] replaces %<y1> placeholder.

Figure 6. S-function definition of the GPU in the loop block

(GPU_State_Space.c file)

Figure 7. TLC description of the GPU in the loop block

required for code generation (GPU_State_Space.tlc file)

3. AMP Implementation of LTI system

The key definition in AMP is array class which

represents an ordered set of data stored on the target video

controller (GPU) opposite to storing it in CPU addressed

memory. In AMP programming model multiple threads of

execution share a common global memory located at GPU.

Also a group of execution threads called a tile can access

dedicated tile memory isolated from the global memory.

Variables located at GPU belong to array class. Variables

located at CPU address space but accessible from GPU

belong to array_view class. The tile_static class represents

a variable stored in tile memory. Figure 8 presents the

header part of the GPU_Calc.cpp file which includes the

library amp.h and the concurrency namespace. There are

filled the values of the system matrices A, B, C, D which

are with predefined dimensions. Also vectors with input,

output and state signals are defined.

Figure 8. State space realization on GPU with C++ AMP library

(GPU_Calc.cpp)

The definition of the function parSS() which is called

from the TLC wrapper is presented on figure 9. Since

system A, B, C, D are stored in CPU memory a

corresponding array views have to be defined. The

program instructs parallel execution of multiple threads

with parallel_for_each operator from AMP library which

defines multiple threads of execution over so called extent

of indexes. The parallel for each operator defines the

program that will be executed over the data. Its content is

given in figure 10.

Figure 9. Setting up parallel_for_each operator (GPU_Calc.cpp)

void parSS() {

 array_view<float,2> Amat_gpu_view(NX,NX,Amat);
 array_view<float,2> Bmat_gpu_view(NX,NU,Bmat);

 array_view<float,2> Cmat_gpu_view(NY,NX,Cmat);

 array_view<float,2> Dmat gpu view(NY,NU,Dmat);
 array<float,1> u_mem(NU), x_mem(NX), y_mem(NY);

 array<float,1> x_new_mem(NX);

 array_view<float,1>u_view(NU,u),x_view(NX,x),y_view(NY,y);
 copy(x view,x mem); copy(u view,u mem);

 extent <2> ex(NX,NX);
 parallel_for_each (ex.tile <1,NUM>(),...);

 copy(x new mem,x view); copy(y mem,y view);

}

#include “GPU Calc.h”

#include <amp.h>

using namespace concurrency;

#define MAX(X,Y) (((X) < (Y)) ? (Y) : (X))
#define NX 3

#define NU 2

#define NY 2
#define NUM (MAX((NX), MAX((NU), (NY))))

float Amat[NX∗NX] = {…};

float Bmat[NX∗NU] = {…};

float Cmat[NX∗NY] = {…};

float Dmat[NY∗NU] = {…};

float u[NU], y[NY], x[NX];

%implements GPU_State_Space "C"

%function BlockTypeSetup(block, system) void

 %<LibAddToCommonIncludes("GPU_Calc.h")>

%endfunction %% BlockTypeSetup

%function Outputs(block,system) Output

{

 %assign u1 = LibBlockInputSignal(0,"","",0)

 %assign u2 = LibBlockInputSignal(0,"","",1)

 %assign y1 = LibBlockOutputSignal(0,"","",0)

 %assign y2 = LibBlockOutputSignal(0,"","",1)

 u[0] = %<u1>; u[1] = %<u2>;

 parSS();

 %<y1> = y[0]; %<y2> = y[1];

}

%endfunction

#define SFUNCTION NAME GPU_State_Space
#define SFUNCTION LEVEL 2

#include ” simstruc . h”

static void mdlInitializeSizes (SimStruct ∗S)
{

...

ssSetNumContStates(S, 0);
ssSetNumDiscStates(S, 0);

if (! ssSetNumInputPorts(S, 1)) return; // One input port − port 0

ssSetInputPortWidth(S, 0, Nu); // Dimension of the signal on port 0
if (! ssSetNumOutputPorts(S, 1)) return; // One output port − port 0

ssSetOutputPortWidth(S, 0, Ny); // Dimension of the signal on port 0

ssSetOutputPortDataType(S, 0, SS_SINGLE);
ssSetNumSampleTimes(S, 1);

ssSetNumRWork(S, 0);

ssSetNumIWork(S, 0); ssSetNumPWork(S, 0);
ssSetNumModes(S, 0); ssSetNumNonsampledZCs(S, 0);

...

}

static void mdlInitializeSampleTimes (SimStruct ∗S)
{

ssSetSampleTime(S, 0, INHERITED SAMPLE TIME);

ssSetOffsetTime (S, 0, 0.0);
}

Information Technologies 3 2019 30
and Control

Figure 10. State space realization on GPU

with C++ AMP library

To parallelize the algorithm (1) the discrete state space

equations are represented as a two dimensional calculation

problem with the help of row index i and column index j,

(2) 1, , ,

1 1

N N

k i i j ij k j j ij k j i ij

j j

x a x b u p   

 

    ,

(3)

, , ,

1 1

N N

k i i j ij k j j ij k j i ij

j j

y c x d u q   
 

   
,

where max(, ,)x y uN N N N . The selection coefficients

j , j , j and j are defined with

(4)

1,
,

0,

x
j j

x

i N

i N
 


  



1,
,

0,

u
j

u

i N

i N



 



1,
.

0,

y

j
y

i N

i N



 



To be able to calculate (1)ix k  and ()iy k by

summation over j one have to finish with multiplication

within each term of the sum. So the form of representation

allow only for N threads of parallelization. To reach
2N

parallel threads there have to be synchronization between

calculation of (,)ij ijp q terms and (,)i ix y N terms. C++

AMP supports tile indexing so N N threads of execution

are divided in N rows of 1 N tiles (figure 9).

The first argument of parallel_for_each defines the

tiling over the extent ex of indexes for the problem. The

second argument is a pointer to a function which defines

calculation algorithm for each index pair (,)i j (figure 10).

The operator idx.barrier.wait() causes current thread from a

tile to be blocked until the rest of the threads from the same

1 N tile reach that operator. Therefore summation of

terms (,)ij ijp q which is after the barrier function won’t

start before all of the multiplications are updated. This final

summation which calculates the values of the next state and

the output are executed serially by the leading tread from

the 1 N tile which is identified by the condition

idx.local[1] == 0. The variable idx is an index for the tile

threads.

4. Practical example

The following third order state space model in discrete

time will be used in the paper as an example system:

(5)

0.0357 0.4289 0.3992

0.0587 0.2242 0.4242

0.0718 0.0702 0.2281

A

 
 

   
   

,

(6)

0.057 1.0278

0.6234 0.4744

0.2641 0.6005

B

 
 

  
  

,

(7)
0.063 0.235 1.6688

1.1143 0.06 0.3196
C

 
  

   
,

(8)
2.1295 0.5342

1.0193 1.6304
D

 
  

 
.

4.1. Controller Design

The purpose of the controller u xN N
K R


 is to reduce

the system sensitivity to external disturbances by making

the input signal ()u k linearly dependent on the state

estimate ˆ()x k . The actual state ()x k of the system cannot

be directly measurable so linear observer algorithm

calculates a convergent estimate ˆ() ()x k x k (when

k ) of the state which can be used by the controller [6,

7]. The desired locations of the poles which are also

eigenvalues of the matrix A are set to 1 0.37ST
e 

  ,

2
2 0.14ST

e 
  ,

3
3 0.05ST

e 
  , where 1ST  s is the

sampling time. After application of the controller K, the

dynamics of the closed-loop system with the state feedback

is determined by the eigenvalues of A BK . Therefore by

solving for the elements of the matrix K the equation

1 2 3() (, ,)eig A BK diag     we get

[=,&u_mem,&_ mem,&y_mem,&x new_mem]
(tiled_index<1,NUM> idx) restrict(amp) {

 tile_static float buf[NUM];

 tile_static float buf1[NUM];

 if (idx.local [1] < NX) {

 buf[idx.local[1]] = Amat_gpu_view(idx.tile[0], idx.local[1])∗
 x_mem(idx.local[1]);

 buf1[idx.local[1]] = Cmat_gpu_view(idx.tile[0], idx.loca[1])∗
 x_mem(idx.local[1]);

 }
 if (idx.local[1] < NU) {

 buf[idx.local[1]] += Bmat_gpu_view(idx.tile[0], idx.local[1])∗
 u_mem(idx.local[1]);

 buf1[idx.local[1]]+= Dmat_gpu_view(idx.tile[0], idx.local [1])∗
 u_mem(idx.local_[1]);

 }
 idx.barrier.wait();

 if (idx.local[1] == 0) {

 int k;
 for (k=0;k<NUM;k++) {

 if (idx.tile[0] < NX) x_new_mem(idx.tile[0]) += buf[k];

 if (idx.tile[0] < NY) y_mem(idx.tile[0]) += buf1[k];

 }

}

Information Technologies 3 2019 31
and Control

(9)
0.2863 0.448 1.1498

.
0.1944 0.2422 0.4938

K
 

  
  

The state controller calculates control action according

to u Kx but the current state x is not directly observable.

Asymptotic estimate x̂ of the state is produces from

(10)  ˆ ˆ ˆ(1) () () () ()obsx k Ax k Bu k K y k Cx k     ,

where the observer gain obsK is calculated such that the

integral

(11)
T Tˆ ˆ ˆ ˆ() () () ()

k

J x x Q x x y y R y y     

is minimized. For 3Q I and 3
210Q I the observer gain

(12)
30.9204 0.6416 0.3609

10
0.1908 0.0401 0.034

.obsK  
  

  

The state feedback gain K regulates the properties of

the transient but to achieve unit stationary gain between the

reference r and the output signal y a scaling matrix L is

calculated as  
1

1
3(C - DK)(I - A BK) B DL


  which

gives the following result

(13)
0.3353 0.1058

.
0.1685 0.3035

L
 
 
 



Figure 11 shows the locations of the system poles in

the complex plane. After application of the state feedback

gain u xN N
K R


 , the original locations of the system poles

are translated to the prescribed locations (0.05, 0.14, 0.37)

of the corrected system. Such change makes the system

transients from oscillatory (left half plane pole) to aperiodic.

However the locations of the transmission zeros is also

changed which can be observed on figure 12. One of the

zeros of the original system is outside the unit circle which

indicates non minimal phase transients. The corresponding

zero of the corrected system is also outside the circle but a

lot closer. Hence the non minimal phase effects will be

attenuated.

4.2. Simulink model

The model from figure 13 contains two identical closed

loop systems controlled with previously synthesized state

feedback. Both systems are mathematically equivalent. The

only difference is GPU implementation of the plant’s model

for the upper system. The aim of such simulation is to

validate that both systems produce identical response. The

controller is implemented as a matrix gain block. The

observer Eq. (10) is inserted in the model with the help of

Discrete State-Space block.

Figure 11. Locations of the closed-loop poles

compared to open loop poles

Figure 12. Locations of the closed-loop transmission

zeros compared to open loop transmission zeros

Since the outputs of the upper and the lower closed-

loop system are identical during simulation the only

difference can be seen if calculate the residual

Simulink GPUy y between the Simulink output Simulinky and

the GU in the loop output GPUy . This residual is presented

on figure 14 and is result from the rounding errors form

floating point arithmetic. It is widely known that for the

case of single precision floating point numbers such errors

are from the order of 610 . The figure confirms that.

However since the example system is with two outputs the

actual plot is the 2-norm of the residual.

Information Technologies 3 2019 32
and Control

Figure 13. Locations of the closed-loop transmission zeros

compared to open loop transmission zeros

Figure 14. The difference between the outputs of the normally

simulated closed loop system and GPU in the loop simulation

overlayed with the step response

Conclusion

The article proposes a certain technique to access

GPGPU capabilities of a desktop platform by Simulink®

environment. Standard Simulink® library does not support

bocks for GPU-in-the-loop processing. The target GPU was

accessed by utilizing Microsoft AMP – a C++ wrapper

library used to accelerate execution of code by exploiting

data-parallelism.

The main result of the article is the design of a new

Simulink block allowing for distributed computation of

linear-state space models. The block is implemented as a

parallel SIMD algorithm on a dedicated GPU device and

can be applied in many practical contexts. The article

examined a practical example for application of such block

for the common task in control theory. The selected

example was simple enough to illustrate the block usage

with the focus on the technique presentation rather than

complexity.

Acknowledgements

This work received seed funding from the National

Science Fund of Bulgaria, Grant No KP-06-M27/10.

References

1. Bouvier, D., B. Cohen, W. Fry, et al. Kabini: An AMD

Accelerated Processing Unit System on A Chip. – IEEE

Micro, 34, 2014, No. 2, 22–33, doi:

https://doi.org/10.1109/MM.2014.3

2. Gregory, K., A. Miller. C++ AMP: Accelerated Massive

Parallelism with Microsoft Visual C++. Microsoft Press,

2012.

3. Jing, Y., W. Zeng, N. Wang, et al. GPU-based Parallel Group

ICA for Functional Magnetic Resonance Data. – Computer

Methods and Programs in Biomedicine, 119, 2015, No. 1, 9–

16, https://doi.org/10.1016/j.cmpb.2015.02.002

4. Ko, Y., Y. Yi, J. Kim, et al. Fast GPU-in-the-loop Simulation

Technique at OpenGL ES API Level for Android Graphics

Applications. Proceeding of International Symposium on

Rapid Sys Prototyping (RSP), IEEE, Amsterdam, 2015, doi:

10.1109/RSP.2015.7416546

5. Ohshima, S., K. Kise, et al. Parallel Processing of Matrix

Multiplication in a CPU and GPU Heterogeneous

Environment, VECPAR 2006, 4395, 305–318, doi:

10.1007/978-3-540-71351-7_24

6. Puleva, T., G. Rouzhekov, T. Slavov, B. Rakov. Hardware in

the Loop (HIL) Simulation of Wind Turbine Power control.

IET Conference Publications, vol. 2016 (CP711), 2016.

7. Puleva, T., G. Ruzhekov, E. Garipov. Modeling and Control

of Power Limited Energy system, IET Conference

Publications, vol. 2010 (CP572), 2010.

8. Zhu, R. Speedup of Micromagnetic Simulations with C++

AMP on Graphics Processing Units. – Computing in Science

& Engineering, 18, 2016, No. 4, 53–59, https://doi.org/

10.1109/MCSE.2015.132

Manuscript received on 16.01.2019

Jordan Kralev, Ph.D., is currently

working as an Assistant Professor in the

Department of Systems and Control at

Technical University of Sofia. He received

his M.Sc. and Ph.D. degrees in Control

Systems Theory from the Technical

University of Sofia, Bulgaria. His main

research interests include: system

identification; embedded control systems; robotics; robust

control systems.

Contacts:

Department of System and Control

Technical University of Sofia

8 Kliment Ohridski Bulv., Sofia, Bulgaria

e-mail: jkralev@tu-sofia.bg

https://doi.org/10.1109/MM.2014.3
https://doi.org/10.1016/j.cmpb.2015.02.002

