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Abstract. Many practical computational tasks require processing 

of big data sets. When calculation cannot be performed fast 

enough multithread parallelization is most obvious solution. 

However interdependence of intermediate results can limit the 

parallelization of the computational problem. In modern control 

theory a key mathematical model is the state-space 

representation. The aim of the present paper is to demonstrate 

how such a model can be implemented on a conventional 

graphical processing unit without disturbing the response of the 

respective closed-loop system where the model is participating. 

 
 

 

1. Introduction  
 

Simulations of complex dynamical systems require 

distributed computational architecture. There are many 

approaches for distributed computing aiming to extend the 

capabilities that a single central processing unit (CPU) can 

offer. Some examples are pear-to-pear (P2P), cluster, grid, 

cloud or jungle computing. These methods can be 

implemented over multicore, network or custom FPGA 

architectures. An easy accessible and relatively cheap 

multicore architecture is the graphical processing unit 

(GPU), which is a hardware platform dedicated to 

processing of 3D video primitives in order to produce 

realistic video output in real time. GPU is a single 

instruction multiple data (SIMD) architecture, which 

allows a single computational algorithm to be executed on 

several distinct data sets simultaneously (figure 1).  

Modern GPU produced by nVidia and AMD hosts 

several hundreds of processing threads. These resources 

are programmable to a certain level with the help of 

specialized shader languages primary designed to allow 

variety of visual effects, such as reflection of light by a 

soap bubble. Programmable shading is used to achieve 

cinematic level realism which is the ultimate goal in 

computer graphics. The parallel array of processors of 

modern GPU is programmable in C language with the help 

of application programming interface (API) for graphics. 

The aim of graphics system is to produce an image from a 

geometrical description of a scene with fast enough refresh 

rate. The GPU processes geometric data through a 

hardware pipeline. The scene is a collection of geometric 

primitives, lights, object materials, viewpoints with 

position and orientation.  

 

Figure 1. Single instruction multiple data (SIMD)  

vs. scalar architectures. Courtesy of Intel® Inc. 

Recently GPUs begin to find application also as a 

general-purpose parallel computation engines or GPGPU 

[4]. They allow extremely high arithmetic throughput and 

streaming memory bandwidth but with considerable 

latency between individual computations since final 

images are only displayed as fast as 16 ms. CPUs are 

optimized for low latency and GPUs are optimized for high 

throughput. A single kernel unit from the GPU array 

achieves a sustained 330 billion floating-point operations 

per second (Gflops). The GPU’s specialized architecture is 

not well suited to every algorithm [3]. Many applications 

are inherently serial and are characterized by incoherent 

and unpredictable memory access. Nonetheless, many 

important problems require significant computational 

power. 

The article proposes a certain technique to access 

GPGPU capabilities of a desktop platform by Simulink® 

environment. Standard Simulink® library does not support 

bocks for GPU-in-the-loop processing. The present work 

aims to run a particular state-space realization on GPU by 

utilizing Microsoft Accelerated Massive Parallelism 

(AMP) [2, 8]. AMP is C++ wrapper library which goal is 
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to accelerate execution of code by exploiting data-parallel 

hardware. This library introduces specialized operators for 

multi-dimensional algorithms. The AMP programming 

model includes also multidimensional arrays, indexing, 

memory transfer, tiling, mathematical function library and 

a control of data transfers between CPU and GPU.  

Mathematical models for many physical processes as 

well as control theory which design the controllers for 

them are extremely dependent on the ability to solve 

systems of ordinary differential equations [1, 5]. Every 

linear time invariant (LTI) system can be represented using 

auxiliary state variables as 

(1) 
( 1) ( ) ( )

( ) ( ) ( )

x k Ax k Bu k

y k Cx k Du k

  

 
, 

where x is a N-dimensional vector of state-variables, u is 

uN -dimensional vector of input variables, y is yN -

dimensional vector of output variables, A, B, C, D are 

matrices with appropriate dimensions, k is the current time 

instant and k  + 1 is the consequent time instant. In order to 

calculate the expression for one-step the computer must 

execute 2

u y u yN NN NN N N    multiplications and 

   1 1u y uN N N N N N      summations. Obviously 

if these operations are executed in parallel they will be 

completed faster than a serial execution. The paper is 

organized as follows. Section II present the Simulink® 

block design, Section III is about related AMP 

implementation, Section IV present a practical example for 

which developed block can be used which concludes with 

the experimental results. 

2. Simulink® block design  

The interface between GPU and Simulink model is 

based on a developed S-function block by the author to 

support simulation of LTI systems represented in state-

space form (figure 2). During normal simulation the GPU 

block behaves only as a placeholder in the diagram by 

sourcing and sinking just a dummy signals. However after 

code generation for general real-time (GRT) target the 

GPU block is replaced with its actual AMP 

implementation in C++ language. In this case the 

simulation is running in External simulation mode when 

the generated code is executed as a standalone application 

and the Simulink block diagram works just as a frontend 

presentation of the application runtime. 

2.1. Code generation from block diagram 

Simulink Coder (formerly Real-Time Workshop) 

generates C and C++ code from Simulink diagrams, 

Stateflow charts, and MATLAB functions. The generated 

source code can be used for real-time and non real-time 

applications such as simulation acceleration, rapid 

prototyping, hardware-in-the-loop simulation, embedded 

algorithm design, etc. 

 

Figure 2. Block diagram with the developed GPU in the loop 

block for simulation of LTI dynamical systems. 

The Simulink model can be translated into suitable 

description for the target hardware platform. This process 

generates a sequence of intermediate representations of the 

primary Simulink functional diagram. A key transition in 

this process is the conversion from block diagram to C 

language. Consequently, the generated code is integrated 

with additional device driver libraries and compiled into a 

standalone executable. Also the generated code can be 

integrated with target specific routines to create a module 

for some operating system. The process finishes with 

compilation and loading into target platform. These 

transformations of the original functional description are 

required because Simulink model is more abstract form of 

representation than target hardware platform can 

understand. Code generation is controlled through 

template-like configuration files. Figure 3 summarizes the 

stages of the code generation process. 

 

Figure 3. Generation of executable code  

from Simulink block diagram 

Target Language Compiler (TLC) is an intermediate 

script language representing the translation from Simulink 

graphical blocks to the target C code. Therefore each block 
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from the diagram needs a corresponding TLC file. When 

S-function block is used the designer has to specify also its 

TLC description in order to inline the block into target. A 

dedicated RTW file (rtw for real-time workshop) contains 

the representation of the Simulink model as a hierarchical 

structure describing also the interconnection between 

blocks and their parameters. This is the form which TLC 

parser can read in order to produce C programs. The parser 

has an access to each block input or output signal. This 

information is necessary to properly reproduce block 

function in C language. 

The main TLC file for the target is the system target 

file (STF) which is parsed when build command for the 

model is invoked. It in turn invokes the block specific TLC 

files. The STF also defines some target specific interface 

for user interaction through Model Configuration Setting 

dialog. For example one can turn on or turn off a particular 

software future in the generated code. After the code is 

generated the process of compilation and linking is 

controlled by a template make file (TMF) also specific to 

the selected target. The produced makefile from it is used 

by a dedicated make tool which in turn invokes the target 

toolchain. 

2.2. Design of GPU_State_Space block 

The block named GPU_State_Space from figure 2 is a 

S-function block which is described by four files: 

GPU_State_Space.c is S-function definition for normal 

simulation mode, GPU_State_Space.tlc is TLC wrapper 

which works as a template during the C code generation 

for the block, GPU_Calc.cpp is the actual C++ AMP code 

for SIMD processing of state-space realization, 

GPU_Calc.h is the corresponding header file containing 

declarations to be included in generated C code.  

When some model blocks are CPU implemented and 

others are GPU implemented it is appropriate to use 

External simulation mode as opposite to Normal 

simulation mode. In this mode the model is translated to C 

code and then compiled to selected target which in the case 

for GPU_state_space block would be generic real-time 

(GRT) target. Figure 4 shows the target selection dialog 

box, which allows for “exporting” the Simulink model to 

various platforms. New targets can be created as well by 

developing the respective STL and TMF templates. This 

target platform used in this article is actually the host PC 

where the user develops the model. Then the GRT 

compiled model will be run as a standard console 

application under MS Windows OS and the source 

Simulink model serves only as a graphical user interface 

for data recording and parameter tuning. External mode 

simulation is started and controlled from dedicated dialog 

box presented on figure 5. This dialog makes the 

connection between the block diagram and the target and 

controls the data acquisition options. 

 

Figure 4. Target selection dialog box 

 

Figure 5. External mode control panel 

In normal simulation mode the GPU block from figure 

2 is only a placeholder. It has defined input and output 

ports with appropriate types to allow integration with the 

data from the rest block in the model. The block is 

introduced in the model a as S-function GPU_State_Space 

which is a C program compiled as a MATLAB executable 

(MEX) binary. Figure 6 contains the description of the 

block for simulation mode. This S-function defines only 

initialization routine about port data types and port size. 

The input port is defined as a vector signal with uN  

elements and the output port is a vector yN elements 

which are single precision floating-point numbers. The S-

function is compiled with command mex 

GPU_State_Space.c which generates the 

GPU_State_Space.*mex* file. 

The TLC file for the GPU block is summarized in 

figure 7. TLC syntax is well documented in Mathworks 

documents. Figure 7 defines the target implementation of 

the block with respect to two functions. BlockTypeSetup 

function includes GPU_Calc.h which declares AMP 

dependent description of the block. The function Outputs is 

invoked once in every sample interval during model 

execution. There the parSS() function is called to calculate 

the model transition from current state to the next. The 

inputs and outputs of the AMP algorithm are implements 
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as the array u[] and y[]. On figure 7 the assigned TLC 

placeholders are related to their actual values. For example 

variable y[1] replaces %<y1> placeholder. 

 

Figure 6. S-function definition of the GPU in the loop block 

(GPU_State_Space.c file) 

 

Figure 7. TLC description of the GPU in the loop block 

required for code generation (GPU_State_Space.tlc file) 

3. AMP Implementation of LTI system 

The key definition in AMP is array class which 

represents an ordered set of data stored on the target video 

controller (GPU) opposite to storing it in CPU addressed 

memory. In AMP programming model multiple threads of 

execution share a common global memory located at GPU. 

Also a group of execution threads called a tile can access 

dedicated tile memory isolated from the global memory. 

Variables located at GPU belong to array class. Variables 

located at CPU address space but accessible from GPU 

belong to array_view class. The tile_static class represents 

a variable stored in tile memory. Figure 8 presents the 

header part of the GPU_Calc.cpp file which includes the 

library amp.h and the concurrency namespace. There are 

filled the values of the system matrices A, B, C, D which 

are with predefined dimensions. Also vectors with input, 

output and state signals are defined. 

 

Figure 8. State space realization on GPU with C++ AMP library 

(GPU_Calc.cpp) 

The definition of the function parSS() which is called 

from the TLC wrapper is presented on figure 9. Since 

system A, B, C, D are stored in CPU memory a 

corresponding array views have to be defined. The 

program instructs parallel execution of multiple threads 

with parallel_for_each operator from AMP library which 

defines multiple threads of execution over so called extent 

of indexes. The parallel for each operator defines the 

program that will be executed over the data. Its content is 

given in figure 10. 

 

Figure 9. Setting up parallel_for_each operator (GPU_Calc.cpp) 

 

void parSS() { 

      array_view<float,2> Amat_gpu_view(NX,NX,Amat); 
      array_view<float,2>  Bmat_gpu_view(NX,NU,Bmat); 

      array_view<float,2> Cmat_gpu_view(NY,NX,Cmat); 

      array_view<float,2> Dmat gpu view(NY,NU,Dmat); 
      array<float,1> u_mem(NU), x_mem(NX), y_mem(NY); 

      array<float,1> x_new_mem(NX); 

      array_view<float,1>u_view(NU,u),x_view(NX,x),y_view(NY,y);  
      copy(x view,x mem); copy(u view,u mem); 

 

      extent <2> ex(NX,NX); 
      parallel_for_each (ex.tile <1,NUM>(),...); 

 

      copy(x new mem,x view); copy(y mem,y view); 

} 

#include “GPU Calc.h” 

#include <amp.h> 

 
using namespace concurrency; 

 

#define MAX(X,Y) (((X) < (Y)) ? (Y) : (X)) 
#define NX 3 

#define NU 2 

#define NY 2 
#define NUM (MAX((NX), MAX((NU), (NY)))) 

float Amat[NX∗NX] = {…}; 

float Bmat[NX∗NU] = {…}; 

float Cmat[NX∗NY] = {…}; 

float Dmat[NY∗NU] = {…}; 

float u[NU], y[NY], x[NX]; 

%implements GPU_State_Space "C" 

 

%function BlockTypeSetup(block, system) void 

    %<LibAddToCommonIncludes("GPU_Calc.h")> 

%endfunction %% BlockTypeSetup 

 

%function Outputs(block,system) Output 

{ 

    %assign u1 = LibBlockInputSignal(0,"","",0) 

    %assign u2 = LibBlockInputSignal(0,"","",1) 

    %assign y1 = LibBlockOutputSignal(0,"","",0) 

    %assign y2 = LibBlockOutputSignal(0,"","",1) 

 

    u[0] = %<u1>; u[1] = %<u2>; 
 

    parSS(); 

 
    %<y1> = y[0]; %<y2> = y[1]; 

} 

%endfunction 

#define SFUNCTION NAME GPU_State_Space 
#define SFUNCTION LEVEL 2 

 

#include ” simstruc . h” 
 

static void mdlInitializeSizes (SimStruct ∗S) 
{ 

... 

ssSetNumContStates(S, 0); 
ssSetNumDiscStates(S, 0); 

if (! ssSetNumInputPorts(S, 1)) return;  // One input  port − port 0 

ssSetInputPortWidth(S, 0, Nu); // Dimension of the signal on port 0 
if (! ssSetNumOutputPorts(S, 1)) return;  // One output port − port 0 

ssSetOutputPortWidth(S, 0, Ny); // Dimension of the signal on port 0 

ssSetOutputPortDataType(S, 0, SS_SINGLE);  
ssSetNumSampleTimes(S, 1); 

ssSetNumRWork(S, 0);  

ssSetNumIWork(S, 0); ssSetNumPWork(S, 0); 
ssSetNumModes(S, 0); ssSetNumNonsampledZCs(S, 0); 

... 

} 

static void mdlInitializeSampleTimes (SimStruct ∗S) 
{ 

ssSetSampleTime(S, 0, INHERITED SAMPLE TIME); 

ssSetOffsetTime (S, 0, 0.0); 
} 
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Figure 10. State space realization on GPU  

with C++ AMP library 

To parallelize the algorithm (1) the discrete state space 

equations are represented as a two dimensional calculation 

problem with the help of row index i and column index j, 

(2) 1, , ,

1 1

N N

k i i j ij k j j ij k j i ij

j j

x a x b u p   

 

    , 

(3) 

, , ,

1 1

N N

k i i j ij k j j ij k j i ij

j j

y c x d u q   
 

   
, 

where max( , , )x y uN N N N . The selection coefficients

j , j , j  and j  are defined with 

(4) 

1,
,

0,

x
j j

x

i N

i N
 


  



1,
,

0,

u
j

u

i N

i N



 



1,
.

0,

y

j
y

i N

i N



 

  

To be able to calculate ( 1)ix k   and ( )iy k by 

summation over j  one have to finish with multiplication 

within each term of the sum. So the form of representation 

allow only for N  threads of parallelization. To reach 
2N  

parallel threads there have to be synchronization between 

calculation of ( , )ij ijp q terms and ( , )i ix y N  terms. C++ 

AMP supports tile indexing so N N  threads of execution 

are divided in N  rows of 1 N  tiles (figure 9).  

The first argument of parallel_for_each defines the 

tiling over the extent ex of indexes for the problem. The 

second argument is a pointer to a function which defines 

calculation algorithm for each index pair ( , )i j  (figure 10). 

The operator idx.barrier.wait() causes current thread from a 

tile to be blocked until the rest of the threads from the same 

1 N  tile reach that operator. Therefore summation of 

terms ( , )ij ijp q  which is after the barrier function won’t 

start before all of the multiplications are updated. This final 

summation which calculates the values of the next state and 

the output are executed serially by the leading tread from 

the 1 N  tile which is identified by the condition 

idx.local[1] == 0. The variable idx is an index for the tile 

threads. 

4. Practical example 

The following third order state space model in discrete 

time will be used in the paper as an example system: 

(5) 

0.0357 0.4289 0.3992

0.0587 0.2242 0.4242

0.0718 0.0702 0.2281

A

 
 

   
   

, 

(6) 

0.057 1.0278

0.6234 0.4744

0.2641 0.6005

B

 
 

  
  

, 

(7) 
0.063 0.235 1.6688

1.1143 0.06 0.3196
C

 
  

   
, 

(8) 
2.1295 0.5342

1.0193 1.6304
D

 
  

 
. 

4.1. Controller Design 

The purpose of the controller u xN N
K R


  is to reduce 

the system sensitivity to external disturbances by making 

the input signal ( )u k  linearly dependent on the state 

estimate ˆ( )x k . The actual state ( )x k  of the system cannot 

be directly measurable so linear observer algorithm 

calculates a convergent estimate ˆ( ) ( )x k x k (when

k  ) of the state which can be used by the controller [6, 

7]. The desired locations of the poles which are also 

eigenvalues of the matrix A are set to 1 0.37ST
e 

  , 

2
2 0.14ST

e 
  , 

3
3 0.05ST

e 
  , where 1ST  s is the 

sampling time. After application of the controller K, the 

dynamics of the closed-loop system with the state feedback 

is determined by the eigenvalues of A BK . Therefore by 

solving for the elements of the matrix K the equation 

1 2 3( ) ( , , )eig A BK diag     we get 

[=,&u_mem,&_ mem,&y_mem,&x new_mem]  
(tiled_index<1,NUM> idx) restrict(amp) { 

      tile_static float buf[NUM]; 

      tile_static float buf1[NUM]; 

      if (idx.local [1] < NX) { 

          buf[idx.local[1]] = Amat_gpu_view(idx.tile[0], idx.local[1])∗ 
                                       x_mem(idx.local[1]); 

          buf1[idx.local[1]] = Cmat_gpu_view(idx.tile[0], idx.loca[1])∗ 
                                       x_mem(idx.local[1]); 

        } 
      if (idx.local[1] < NU) { 

          buf[idx.local[1]] += Bmat_gpu_view(idx.tile[0], idx.local[1])∗ 
                                           u_mem(idx.local[1]); 

           buf1[idx.local[1]]+= Dmat_gpu_view(idx.tile[0], idx.local [1])∗ 
                                            u_mem(idx.local_[1]); 

       } 
       idx.barrier.wait(); 

       if  (idx.local[1] == 0) { 

             int k; 
             for (k=0;k<NUM;k++) { 

                 if (idx.tile[0] < NX)  x_new_mem(idx.tile[0]) += buf[k ]; 

                 if (idx.tile[0] < NY)  y_mem(idx.tile[0]) += buf1[k ]; 

       } 

} 
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(9) 
0.2863 0.448 1.1498

.
0.1944 0.2422 0.4938

K
 

  
  

 

The state controller calculates control action according 

to u Kx  but the current state x is not directly observable. 

Asymptotic estimate x̂  of the state is produces from 

(10)  ˆ ˆ ˆ( 1) ( ) ( ) ( ) ( )obsx k Ax k Bu k K y k Cx k     , 

where the observer gain obsK  is calculated such that the 

integral  

(11) 
T Tˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

k

J x x Q x x y y R y y       

is minimized. For 3Q I  and 3
210Q I  the observer gain 

(12) 
30.9204 0.6416 0.3609

10
0.1908 0.0401 0.034

.obsK  
  

  
 

The state feedback gain K regulates the properties of 

the transient but to achieve unit stationary gain between the 

reference r and the output signal y a scaling matrix L is 

calculated as  
1

1
3(C - DK)(I - A BK) B DL


   which 

gives the following result 

(13) 
0.3353 0.1058

.
0.1685 0.3035

L
 
 
 

  

Figure 11 shows the locations of the system poles in 

the complex plane. After application of the state feedback 

gain u xN N
K R


 , the original locations of the system poles 

are translated to the prescribed locations (0.05, 0.14, 0.37) 

of the corrected system. Such change makes the system 

transients from oscillatory (left half plane pole) to aperiodic. 

However the locations of the transmission zeros is also 

changed which can be observed on figure 12. One of the 

zeros of the original system is outside the unit circle which 

indicates non minimal phase transients. The corresponding 

zero of the corrected system is also outside the circle but a 

lot closer. Hence the non minimal phase effects will be 

attenuated. 

4.2. Simulink model 

The model from figure 13 contains two identical closed 

loop systems controlled with previously synthesized state 

feedback. Both systems are mathematically equivalent. The 

only difference is GPU implementation of the plant’s model 

for the upper system. The aim of such simulation is to 

validate that both systems produce identical response. The 

controller is implemented as a matrix gain block. The 

observer Eq. (10) is inserted in the model with the help of 

Discrete State-Space block. 

Figure 11. Locations of the closed-loop poles  

compared to open loop poles 

Figure 12. Locations of the closed-loop transmission 

zeros compared to open loop transmission zeros 

Since the outputs of the upper and the lower closed-

loop system are identical during simulation the only 

difference can be seen if calculate the residual 

Simulink GPUy y  between the Simulink output Simulinky  and 

the GU in the loop output GPUy . This residual is presented 

on figure 14 and is result from the rounding errors form 

floating point arithmetic. It is widely known that for the 

case of single precision floating point numbers such errors 

are from the order of 610 . The figure confirms that. 

However since the example system is with two outputs the 

actual plot is the 2-norm of the residual. 
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Figure 13. Locations of the closed-loop transmission zeros 

compared to open loop transmission zeros 

Figure 14. The difference between the outputs of the normally 

simulated closed loop system and GPU in the loop simulation 

overlayed with the step response 

Conclusion 

The article proposes a certain technique to access 

GPGPU capabilities of a desktop platform by Simulink® 

environment. Standard Simulink® library does not support 

bocks for GPU-in-the-loop processing. The target GPU was 

accessed by utilizing Microsoft AMP – a C++ wrapper 

library used to accelerate execution of code by exploiting 

data-parallelism.  

The main result of the article is the design of a new 

Simulink block allowing for distributed computation of 

linear-state space models. The block is implemented as a 

parallel SIMD algorithm on a dedicated GPU device and 

can be applied in many practical contexts. The article 

examined a practical example for application of such block 

for the common task in control theory. The selected 

example was simple enough to illustrate the block usage 

with the focus on the technique presentation rather than 

complexity. 
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