
Information Technologies 2 2019 2
and Control

Online ISSN: 2367-5357

DOI: 10.7546/itc-2019-0006

Events Proactive Management

in Virtual-Physical Space

Z. Guglev, S. Stoyanov, I. Popchev, B. Toskov

Key Words: Event model, virtual-physical space, event broker,

virtual education space, JADE.

Abstract. This article describes improvements over the classical

object-oriented solution for managing events in the Virtual-Physical

Space, successor of the DeLC system, by introducing a higher-level

implementation based on Java Agent Development Framework. The

development brings proactive, agent-based solution for

representation and distribution of events with abilities to interact

with other FIPA rational agents.

1. Introduction

Virtual-Physical Space (ViPS) [16] which is an

extended version and successor of the Virtual Education

Space [7, 20] and Distributed eLearning Centre [17] systems

developed in the University of Plovdiv “Paisii Hilendarski”

is built upon the Cyber-Physical-Social-Space and Internet

of Things ideologies, utilizing different hardware and

software layers to accomplish various purposes starting

from simple environment monitoring to proactive personal

assistance based on performance and behavioral analysis.

The latest version of the system resolves a major

disadvantage in its predecessors – ignoring the presence of

a physical environment which is often the source of many

causal effects that will eventually propagate into the virtual

space or vice versa. The majority of software operating

inside the ViPS include ontologies, traditional software

services, microservices, and rational agents, most of which

operate in cooperative manner to achieve some common

purposes. The specifics of the chosen distributed approach

however bring their own group of problems that have to be

solved in advance like for e.g. agreement upon common

objectives, definition, execution and distribution of tasks,

coordination of actions, data sharing, and state monitoring.

The ViPS attempts to firstly solve those sub-problems by

introducing its own event representation model and a set of

algorithms and mechanisms for basic analysis,

classification, distribution and storage, combining them and

the model into a custom event engine.

Modern aircrafts have a wide variety of sensors that

generate large volumes of data for different work

characteristics. This data belongs to the so called Industrial

Big Data (IBD) – big data arrays collected from any

industrial equipment. The collection and storage of IBD in

aircraft is at a local level. The technology allows online

monitoring of the status of the equipment, which is

expensive and its implementation is very selective. Current

developments for this model include wireless sensors, a web

browser that monitors the equipment status and an online

alert system that informs the operator or the support team of

any deviations. The information is sent by e-mail or text

messages.

The following section gives more information

background and ranges over approaches used in some of the

related works while the other subsequent sections focus on

describing the techniques used to transform the existing

ViPS’s event engine from an object-oriented to agent-

oriented one, explaining the benefits of such an approach.

2. Existing theories and work

The concept for using events as a basic organizational

structure or a way to exchange data is very common.

Essential event forming and event processing approaches

are described in [5]. Events are used to organize and access

dynamic multimedia systems in [21], where similar events

are differentiated from each other based on their

spatiotemporal parameters and other specific to the event

characteristics. Data-driven event triggering and low-level

event-based communication techniques applied in IoT

environments are described in [10]. Further details over the

various basic event aspects are given in [9] – spatial,

temporal, causal, structural, experimental, and informative

while [14] explains ways to describe event flows and

transitions in calculus form. In [13] is shown an alternative

data compression and representation technique of event’s

embedded key performance indicators, the values of which

in that case come from IoT devices. The event approach got

included in OWL language as well, getting extended by [11]

Information Technologies 2 2019 3
and Control

with elements allowing modelling of event flows. Modular

event architecture “MAIA” [15] suggests event based-

approach for agent communication relying on JSON-LD as

a format for data exchange backed by Event Web Ontology.

Event Engine 1.0

The current version of the ViPS includes an object-

oriented implementation of event model and engine used to

standardize representation and manipulation of events, the

occurrence of which affect Space’s domain and operation

[4]. Although in its current form the model is flexible

enough and relatively easy to integrate with most Space’s

components, a certain majority of units operating on higher

abstraction level can benefit from a similar implementation

based on the idea of human’s practical reasoning,

implemented as FIPA-compliant rational agents and an

underlying group of behaviors.

Defining “Event”

The definition “event” has a great importance for

systems operating with occurrences. The earliest version of

the event model defines “event” concept as a basic principle

and structure to organize, access and synchronize various

dynamic systems within the ViPS. From the suggested in [4]

options it is accepted the following: “something that

happens or is regarded as happening; an occurrence,

especially one of some importance; the outcome, issue, or

result of anything; something that occurs in a certain place

during a particular interval of time”. Due to the broad range

of definitions the term “event” can have, for the purposes of

the ViPS it is preferred as a phenomenon occurring (or

accepted as having occurred) within a particular location

and time interval, the effect of which affects ViPS’s

operation. In other words, it is accepted that there are many

kinds of events, but acknowledged and considered are only

those affecting the ViPS.

Concepts for event representation

Because events can occur both in the physical or

virtual world it is accepted differentiation based on this

criterion. Separately, a way for symbolic representation in

the virtual world needs to exist (including for virtualization

of physical events). Finding the required, suitable

representation for the purpose is a challenging task. The

large variety of events with their characteristics and the fact

that events depend on different factors like domain of

interest, context, and granularity makes possible using

alternative approaches to define them. One variant is the

“bottom up” approach which aims for simpler

representation, where some events are defined as more

complex structures built out of other elementary events.

Another possibility is reverse of the “top down” approach

attempting to characterize an event in more detailed way by

using different attributes.

For instance in [9] an event model called E-Model is

proposed, introducing the following aspects of any event:

temporal, spatial, informational, causal, structural, and

experiential. In [12], for event it is stated “a thing happening

in a certain time period and place, in which some actors

participate and show some action features, along with the

changing of internal status”. Formally, an event is defined

as a 6-tuple A, O, T, P, S, L where A means an action or a

set of actions happening in event, O means objects involved

in the event, T is the event’s duration, P stands for the

location of event’s happening, S gives object statuses during

an event happens, and L indicates language expressions of

text-based event.

It can be seen two commonly preferred approaches to

represent events:

 Atomic events – on lower level the events are

represented as atomic structures without parameters.

Complex events are built using the atomic ones.

 Attributed events – occupy a higher abstraction level,

where every event is characterized by different

attributes.

While the existing event representation approaches

usually favor one of the two aforementioned methods,

Space’s model relies on a hybrid approach which allows

different components to operate and work with different

event aspects.

In Event Model 1.0 is accepted that E is the set of

events happening within the ViPS and e is event such as

(1) 𝑒 = < 𝑑, 𝑦, 𝑎 >,

with founding characteristics like fictive identifier d, event

type y, and attributes a. The event e' is attributed if:

(2) 𝑒′ ∈ 𝑎(𝑒).

The actual event representation can be done using

recursive structure. Respectively e is an attributed event.

Let’s have two events e', e E such as e' is attributing

and e – attributed. It is defined the following two operations:

 e' ↑ e(fire) – occurrence of e' causes the happening of e;

 e' ↓ e(kill) – occurrence of e' terminates the event e.

Let’s have the two events e', e E and define the following

terms:

 e' || e (independent events) – the event e' does not “know”
about the event e;

 e' → e (dependent events) – event e' premises the event
e, in other words they are causal linked.

Information Technologies 2 2019 4
and Control

The event model supports classification like the following

one:

(3) 𝐸 = 𝐵𝐸 ∪ 𝑆𝐸 ∪ 𝐷𝐸.

The three disjunctive sets above are:

 BE – the set of basic events, actual (time(Date, Hour),

location);

 SE – subset of system events;

 DE – set of domain-dependent events.

Alternatively, if objectify at the most scalar level every

event is assumed as a set of attributes. Time (t) and location

(l) can form event’s basic spatiotemporal identity, but their

use is optional. As mentioned earlier there is an attribute

(payload) section that might contain zero or more

preliminary defined attributes as well as freeform ones. The

section can be also treated as set that will be called P. For

instance there’s an event Ex with some attributes like:

(4) 𝐸𝑥 = { 𝑑, 𝑡, 𝑙, 𝑝1, 𝑝2, … , 𝑝𝑛 }.

The payload section permits unlimited amount of scalar

values along with recursive inclusion of other event

definitions called sub-events that must represent proper

subsets:

(5) 𝑃 = { 𝑝1, 𝑝2, 𝑝𝑛 , {𝑑𝑛 , 𝑡𝑛, 𝑙𝑛, {𝑝𝑛, … }} … },

𝑃 ⊂ 𝐸𝑥 ∨ 𝑃 = ∅.

The aggregation of all definitions and their concrete values

provides a uniquely identified complex event C preceded by

other events becoming sub-events in its definition:

(6) 𝐶 = (𝐴 ∪ (𝐵 ∪ (… ∪ 𝑍)) …).

The possible complexity is moreover limited from the

model, by allowing only basic or system events as sub-

events.

Furthermore, basic primitives are provided through

which it is possible to execute comparison operations

between simple or complex events. This can be done by

specifying the individual members relative to which the

comparison will be done. For example a simple comparison

of two concrete events X and Y having a common integer

field designating priority u can be done by referring to it (by

its alias defined in the model) and the expected outcome M

of the comparison:

(7) 𝑋 = { 𝑢 ∈ ℤ },
𝑌 = { 𝑢 ∈ ℤ },
𝑀 = { 0 },
𝑍 = 𝑋 × 𝑌 = { (𝑥, 𝑦) | 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 },

(8) 𝑆 = {−1, 0, 1 },

(9) 𝑓: 𝑍 ⟶ 𝐴, 𝐴 = { 𝑎 ∈ 𝑆 }, |𝐴| = 1,

where

𝑓(𝑥, 𝑦) = {

−1, 𝑥 < 𝑦
0, 𝑥 = 𝑦
1, 𝑥 > 𝑦

.

The result can be directly compared to the expected outcome

which will indicate whether the desired conditions are met

or not. In case of complex comparisons including sub-

events, M has to be adjusted accordingly to match the

structure of the source data, while 𝑓 will be applied

seamlessly to the members that need to be compared.

Multiple events or their particular attributes can be

combined through the use of logical operations like

conjunction, disjunction, and negation. The above

approximation does not show handling of any special

situations that might occur due to the architectural and

implementation specifics of the model, although they are

realized in it using Java programming language. Such cases

are for instance broken reflexivity from X to Y, from Y to X,

different and/or incomparable data types. Those cases are

resolved in the model by assigning them special finite values

[4]:

NOTCOMPARED = 2,

UNKNOWN = 4,

INCOMPARABLE = 8.

Additionally, the event model defines basic categories and

hierarchy of events. Logically organized, the domain events

take the highest place in the hierarchy, followed by system

events, and lastly the basic events. In contrast, the

programmatic implementation is done in nearly reverse

approach, relying on object-oriented inheritance techniques.

The different events and event categories retain specific

properties and data organizing structures. Mechanisms for

serialization and transportation via different broker

messaging systems complement the model, forming the first

version of ViPS’s event engine [18].

Implementation drawbacks of Even Engine 1.0

Most of the components operating in the ViPS are

implemented as rational agents [17]. While they can directly

use the developed event model to communicate through

events, the object-oriented nature of the engine and its

mechanisms for event distribution in particular deviate the

“agent” nature to “service-based” one. In result the agents

are obliged to manually query through event engine at some

interval the message broker system that’s effectively

delivering events. If new events are available the agent

needs to decide which to ignore, analyse or react to

accordingly and perhaps send back results by generating

another event and forwarding it to the broker. All of the

aforementioned steps need to be developed separately for

the individual agent while considering that they have to be

multiplexed with the inter-agent communication which

Information Technologies 2 2019 5
and Control

happens all the time [3, 19]. Possibility for important events

to be able to interrupt the agent’s communication or vice

versa shall be also considered. Implementing the above

requirements is usually a time- consuming process that is

not very straightforward and requires careful planning of

agent’s architecture and apportioning its computational

resources.

3. Developing Event Engine 2.0

The second version of the engine is based on its

predecessor with the idea of keeping the existing

representation model while improving the event distribution

mechanism, making it more natural for use by rational

agents and thus reduce their development time and

complexity. The implementation is again based on Java

programming language and relies in particular on Java

Agent Development Framework [19]. The final result is a

library containing set of behaviors, configuration utilities,

communication protocols, ontology, and default realization

of rational agent with event brokering functionality.

3.1. Proactive management of events

Instead of making every agent to check for new

events, version 2.0 of the engine reverses the process by

making new events to inform the interested sides for their

existence. When the new event occurs, it is represented by

own agent which announces its existence to the other agents

in the system. With the increasing number of events

however, this approach is rather inefficient even in

environments highly optimized to support many agent

instances. Instead, a single agent was designed to represent

whole category of events. Furthermore, the event model

permits event categories to inherit each other which allows

filtering and reduction of the communication traffic only to

those categories a particular side is interested in. The more

general category is selected, the more events are going to be

received (see figure 1).

Figure 1. Object-oriented archetypal hierarchy and

categorization of events

3.2. Event Engine for JADE

The developed solution is intended to be used as a Java

library or on its own. In the former case the library gets

included as part of the JADE agent that’s being developed,

providing it with set of components for solving various

problems. The components can be used directly after

specifying the required configuration parameters, but also

allow further modifications and extensions. In the latter case

the solution brings default implementation of a configurable

event broker agent, through which bidirectional event

exchange can happen.

3.3. Event engine for JADE library

The most important features brought by the library are

set of behaviors automating event exchange process as well

as ontology, definitions and implementations of

communication protocols to assure proper data transfer.

Every agent with ability to produce or consume events is

required to support the “event-engine-ontology”. Agent

brokers announce themselves into JADE’s Directory

Facilitator service as supporting “event-engine-ontology”

and by doing so they must be able to work with “FIPA-

request”, “FIPA-subscribe”, “event-engine-ping” and

“event-engine-channel-event-exchange” communication

protocols. The first two protocols are well-known and

standardized while the rest are specially implemented for

engine’s purposes. Implicitly for the end user the library

also relies on “FIPA-Agent-Management” and “JADE-

Agent-Management” ontologies and their underlying

protocols, already implemented in JADE [3, 6, 19].

From user agent’s perspective the only required

actions to make it able to send and receive events is

instantiating the provided by the engine behaviors for search

and subscribe to event broker agent, and the one creating

channel for event data exchanging.

3.4. Searching for event broker agents

The term “event broker agent” is used for special type

of rational agents that connect to traditional message broker

systems used by the event engine for distribution of events.

Usually many broker agents are expected to exist, each one

of them responsible for a particular event category with

certain capacity of how many clients it can handle. The

agent brokers communicate with each other using message

broker systems, while communication with ordinary agents

is done via agent communication language based on the

FIPA-SL specification.

Event Engine 2.0 (see figure 2) provides behavior

allowing seamless, automated searching and subscribing to

event broker agents, based on certain criteria like for e.g.

event category and agent proximity. The behavior takes into

account if the broker’s capacity is reached or the broker is

not responsive due to overloading or connectivity problems.

In such cases the behavior will automatically try to find

another suitable broker and if such is found new

subscription will be performed, while unsubscribing from

the older one.

events

system-events domain-events

emergency-events

Information Technologies 2 2019 6
and Control

Figure 2. Configurable event broker agent(s)

use case architecture

3.5. Event exchanging

Event engine includes a separate behavior through

which ordinary and event broker agents can send and

receive events. Depending on which agent initializes it a

data transfer channel to message broker agent or message

broker system gets created. Sending and receiving events

through the channel is asynchronous, placing them in an

internal queue for further processing. This allows

manipulation of the data in batches and optimizes the

computational process. Upon receiving events, the agent is

either allowed to either “subscribe” its own methods for

automatic execution against the received data (similar to

“observer” design pattern) or to manually check for new

events and decide how to process them. In addition to the

above, the behavior automatically converts event instances

from the event model from and to ACL FIPA-SL compatible

messages, verifies that the client side has fully received the

sent data, and also handles cases when event cannot be sent

due to broker unavailability. The last functionality can also

work in sync with the behavior for automatic search and

subscribe for broker agents.

3.6. Event broker agent

The main purpose of engine’s event broker agent is to

provide communication node with characteristics of event

dispatcher and proxy. For every successfully subscribed

agent client the broker creates an internal connection to an

actual message broker system. Any ACL message

containing events addressed to the broker by another agent

will be passed through the corresponding message broker

connection. Receiving events from the message broker

connection leads to converting them into appropriate ACL

messages, several of which might be accumulated into one

data packet unit that will be sent to the corresponding agent.

The event broker agent requires to be provided with a

configuration file upon execution, containing variety of

settings for controlling different behavioral aspects like for

e.g. used data encoding mechanism when sending events

through message broker system, data dispatching mode, the

event category to work with, broker system credentials,

subscribers limit, how often to dispatch data, how often to

check subscriber’s availability, etc. Some of the settings are

automatically remapped for every client agent initiating

subscription, which makes possible to uniquely identify

itself in front of the end broker system, to use persisting

and/or retroactive data retrieval techniques.

Another important aspect is broker agent’s ability to

simultaneously work with several message broker instances

that might be of the same or different types (see figure 3).

This makes possible for the agent to perform event relaying

between isolated broker nodes running different broker

instances or entirely different broker systems. Currently the

engine supports Apache ActiveMQ and Apache Kafka

systems [1, 2].

Figure 3. Data exchange and relations between agents,

event broker agents, and message broker systems

3.7. Event preparation before exchange

To comply both with FIPA-ACL, ActiveMQ and

Kafka standards the event exchange process passes the data

through several transformations to ensure unified, protocol-

friendly stream of bytes that’s not interfering with other

exchange protocols. The first step of the process includes

normal serialization from in-memory Java objects to finite

sequence of bytes. The actual format might be JOSS or

JSON. To overcome any interference that might happen

Information Technologies 2 2019 7
and Control

with FIPA-ACL protocol and its limited subset of characters

and rules that apply to them additional BASE32 encoding

[8] is executed on top of it. BASE32 has a lower encoding

efficiency of around 8:5, but provides a relatively save,

limited set of encoding characters. The results are then

placed into a custom data packet structure, intended for

sending through message broker systems, that combines the

encoded bytes with metadata describing packet’s potential

contents. This gives the receiver the opportunity for

preliminary packet inspection, deciding whether the

contents of the packet are supported or not and possibly

discard them if the second case is in effect. The described so

far process might end by sending the packet through the

underlying message broker systems if the sender turns out

to be event broker agent or non-agent-based component. In

case the sender is an ordinary agent, the prepared data

packet(s) are accumulated into JADE ontological concept

structure called “EventData”. The concept is used during

inter-agent communication and seamlessly gets converted

from and to FIPA-ACL format (see figure 4). Its ability to

contain multiple actual data packets drastically reduces the

number of messages exchanged between the agents and thus

lowers the load on the systems. The exact same process

described above is executed in reverse when agent receives

event data.

Figure 4. Sample communication between client

and agent broker

3.8. Deduplication of events

Using more than one message broker system by single

event broker agent results any ACL messages sent to the

broker to be forwarded to all of its message broker systems.

Without further processing any other agents subscribed to

the same broker agent will receive the exact same message

multiplied by the number of message broker system

instances. To prevent such effects two-side data

deduplication is attempted in the event channel behavior.

The deduplication is based on distinguishing via

dynamically appended to the particular event identification

data, just before being sent through the message brokers.

Upon receiving and before passing the event to the end

destination that information is checked against a non-

persistent collection containing identity data of the latest

received events. A match will indicate that the event has

already been processed so it is safe for the current copy to

be discarded. The technique however is limited by the

storage capacity of the collection. In scenario where one

message broker system receives far greater amount of data

compared to another one a possibility for the deduplication

information to be thrown out too soon exists. For that reason

similar deduplication checks are executed on both event

broker and subscriber agents. Nevertheless this still does not

guarantee entirely duplicates-free event flow, which

suggests careful consideration before deciding to use event

relaying. If this is necessary, and depending on the case, the

default channel behavior might be modified to use persisting

event deduplication data collection.

4. Conclusion

Extending the existing object-oriented event engine to

an agent-based one allowed proactive management of

events within the Virtual-Physical Space. By providing a

separate broker agent to represent concrete event category

resulted simpler, robust and traffic-optimized event

exchange process. In addition to that the second engine

version made possible for the other agents not to

differentiate between natural agent-to-agent, agent-to-

broker, and vice versa communication. As a result, the

development complexity and time for ViPS’s agents to

achieve “general” event-oriented behavior got significantly

reduced. Since the new engine is based on the data

representation model and distribution techniques of its

predecessor, a full compatibility is maintained with the

solutions using its older version.

Acknowledgments
The research is partly supported by the MES by the Grant

No. D01-221/03.12.2018 for NCDSC – part of the

Bulgarian National Roadmap on RIs.

References

1. Apache Foundation, “Kafka Documentation”, available at

https://kafka.apache.org/documentation/, last accessed

2020/05/20.

2. Apache Foundation, Apache ActiveMQ, available at

http://activemq.apache.org/, last accessed 2020/05/20.

3. Bellifemine, F. L., G. Caire, D. Greenwood. Developing

Multi-agent Systems with JADE, John Wiley & Sons, Inc.,

2007.

4. Dictionary.com, “Definition of event”, available at

http://www.dictionary.com/browse/event?s=t, last accessed

2020/05/20.

5. Etzion, O., P. Niblett. Event Processing in Action,

Greenwich: Manning Publications, 2011.

6. Foundation for Intelligent Physical Agents (FIPA), Standard

Status Specifications, available at

https://kafka.apache.org/documentation/
http://activemq.apache.org/
http://www.dictionary.com/browse/event?s=t

Information Technologies 2 2019 8
and Control

http://www.fipa.org/repository/standardspecs.html, last

accessed 2020/05/20.

7. Gramatova, K., S. Stoyanov, I. Popchev. Virtual Education

Space Realization as an Internet of Things Ecosystem. –

Engineering Science, LV, 2018, 1/2018, 5–19.

8. IETF, The Base16, Base32, and Base64 Data Encodings,

October 2006, available at https://tools.ietf.org/html/rfc4648,

last accessed 2020/05/20.

9. Jain, R. EventWeb: Developing a Human-Centered

Computing System. – Computer, 41, 2008, 2, 42–50.

10. Kolios, P., C. Panayiotou, G. Ellinas, M. Polycarpou. Event-

Based Communication for IoT Networking. Proceedings of

the IEEE 2nd World Forum on Internet of Things (WF-IoT),

Milan, Italy, 2015, doi: 10.1109/WF-IoT.2015.7389076.

11. Liu, W. Z. Liu, J. Fu, R. Hu, Z. Zhong. Extending OWL for

Modeling Event-oriented Ontology, Proceedings of the 2010

International Conference on Complex, Intelligent and

Software Intensive Systems, Krakow, Poland, 2010, doi:

10.1109/CISIS.2010.88.

12. Liu, W., Y. Tan, N. Ding, Y. Zhang, Z. Liu. An Ontology

Pattern for Emergency Event Modeling, Proceedings of the

2016 IEEE 14th Int Conf on Dependable, Autonomic and

Secure Computing, 14th Int Conf on Pervasive Intelligence

and Computing, 2nd Int Conf on Big Data Intelligence and

Computing and Cyber Science and Technology Congress

(DASC/PiCom/DataCom/CyberSciTech, Auckland, New

Zealand, 2016, doi: 10.1109/DASC-PICom-DataCom-

CyberSciTec.2016.44.

13. Moawad, A., T. Hartmann, F. Fouquet, G. Nain, J. Klein, Y.

L. Traon. Beyond Discrete Modeling: A Continuous and

Efficient Model for IoT, Proceedings of the 2015 ACM/IEEE

18th International Conference on Model Driven Engineering

Languages and Systems (MODELS), Ottawa, ON, Canada,

2015, doi: 10.1109/MODELS.2015.7338239.

14. Mueller E. T. IBM Watson Group and IBM Research,

Commonsense Reasoning. An Event Calculus Based

Approach, 2nd Ed., Morgan Kaufmann, 2015.

15. Rada, J. F. S., C. A. Iglesias, M. Coronado. MAIA: An Event-

based Modular Architecture for Intelligent Agents,

Proceedings of the 2014 IEEE/WIC/ACM International Joint

Conferences on Web Intelligence (WI) and Intelligent Agent

Technologies (IAT), Warsaw, Poland, 2014, doi:

10.1109/WI-IAT.2014.154.

16. Stoyanov, S., A. Stoyanova-Doycheva, T. Glushkova, E.

Doychev. Virtual Physical Space – An Architecture

Supporting Internet of Things Applications. Proceedings of

the XX International Symposium on Electrical Apparatus and

Technologies – SIELA 2018, Burgas, 2018, 251–252.

17. Stoyanov, S., I. Popchev, E. Doychev, D. Mitev, V.

Valkanov, A. Stoyanova-Doycheva, V. Valkanova, I. Minov.

DeLC Educational Portal. – Cybernetics and Information

Technologies, 10, 2010, 3, 49–69.

18. Stoyanov, S., V. Valkanov, I. Popchev, A. Stoyanova-

Doycheva, E. Doychev. A Model of Context-aware Agent

Architecture. – Comptes rendus de l'Académie bulgare des

sciences, 67, 2014, 4, 487–496.

19. Telecom Italia Lab, JADE v4.5.0 API, available at

https://jade.tilab.com/doc/api/index.html, last accessed

2020/05/20.

20. Valkanov, V., S. Stoyanov, V. Valkanova. Virtual Education

Space. – Journal of Communication and Computer, 13, 2016,

64–76.

21. Westermann, U., R. Jain. Toward a Common Event Model for

Multimedia Applications. – IEEE MultiMedia, 14, 2007, 1,

19–29.

Manuscript received on 16.12.2019

Zhelyan Guglev is a Ph.D. student in the

University of Plovdiv “Paisii

Hilendarski”. He received his M.Sc.

degree in Software Technologies from the

University of Plovdiv in 2015. His current

research interests are in the field of event

modelling, event processing, intelligent

software agents, and the Internet of Things

Contacts:

Department of Intelligent Systems

Institute of Information and Communication Technologies

Bulgarian Academy of Sciences

Sofia, Bulgaria

Department of Computer Systems

Plovdiv University “Paisii Hilendarski”

Plovdiv, Bulgaria

e-mail: stani@uni-plovdiv.net

Prof. Stanimir Stoyanov is a Member of

the Institute of Electrical and Electronic

Engineers (IEEE), of the Association for

Computing Machinery (ACM) and of

Bulgarian Society of Automatics and

Informatics. He received his doctoral

degrees from the Humboldt University of

Berlin, Germany and the De Montfort

University of Leicester, UK. Currently, he is a Lecturer in the

Plovdiv University “Paisii Hilendaski”, Bulgaria, where he

also acts as a Head of the Department of Computer Systems.

His research interests include: intelligent agents, agent- and

service-oriented architectures, CPSS, IoT, context-aware and

adaptable software, eLearning tools and environments.

Publications: 200+, 5 books.

Contacts:

Department of Intelligent Systems

Institute of Information and Communication Technologies

Bulgarian Academy of Sciences

Sofia, Bulgaria

Department of Computer Systems

Plovdiv University “Paisii Hilendarski”

Plovdiv, Bulgaria

e-mail: stani@uni-plovdiv.net

http://www.fipa.org/repository/standardspecs.html
https://tools.ietf.org/html/rfc4648

Information Technologies 2 2019 9
and Control

Ivan Popchev since 2003 is a member of

Bulgarian Academy of Sciences. He

received Ph.D. degree in 1967, with a

thesis “Studies on the performance index

of large scale control systems” and D.Sc.

in 1980, with a thesis “Multicriterial

synthesis of control systems”. He has

more than 480 papers presented at world

congresses, conferences, symposia and workshops and/or

published in international journal/periodicals, proceedings and

books in English, German, French, Russian, Korean and

Bulgarian. His research interests are in the fields of computer

science, mathematical modelling, decision sciences and control

theory.

Contacts:

Institute of Information and Communication Technologies

Bulgarian Academy of Sciences

Sofia, Bulgaria

e-mail: ipopchev@iit.bas.bg

Bosrislav Toskov is a Ph.D. student in the

Plovdiv University “Paisii Hilendaski”,

Bulgaria. His research interests are

focused on Future Networks and the

Internet of Things with applications in

sustainable and independent living: IoT,

multi agents software systems, biometric

identification, wireless M2M

communication.

Contacts:

Department of Computer Systems

Plovdiv University “Paisii Hilendarski”

236 Bulgaria Str., Plovdiv, Bulgaria

e-mail: btoskov@uni-plovdiv.bg

