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Abstract. This paper considers the problem of orthogonal series 

approximation of nonlinear systems described by Volterra series 

and G-functionals of Wiener. The Volterra series model is an 

input/output description of time-invariant nonlinear systems, 

where the Volterra kernels serve as generalizations for the linear 

system input response. Several model properties and conditions for 

the series convergence are presented. The Wiener G-functionals 

are orthogonal functions of time, where the input signal of the 

system is white gaussian noise. They describe nonhomogeneous 

input/output operators, i.e., operators where the change in the 

input signal level changes the level and the form of the output 

signal. The additional orthogonality introduced by Wiener, 

significantly simplifies their computation. The Volterra kernels 

and the Wiener G-functionals are approximated by orthogonal 

polynomials of Legendre. Legendre orthogonal polynomials are 

very effective when used for approximation of time functions on a 

finite interval of time. Formulas for computing the Fourier 

coefficients are developed. Several numerical examples for 

orthogonal series representation of order N = 1 for the nonlinear 

system with kernels up to third order are presented. 

 

 

1. Introduction 
 

Nonlinear systems contain richer dynamics and more 

diverse properties than linear systems: existence of several 

equilibrium points, limit cycles, subharmonic oscillations, 

bifurcation points, chaotic behavior and others. The 

increased complexity of nonlinear behavior requires the 

development of specific nonlinear system methods and 

approaches, which deviate considerably from the 

corresponding linear system techniques. The main feature 

of the approaches for nonlinear system analysis is that there 

is no universal theory for all types of nonlinear problems. In 

order to explore different nonlinear phenomena, the 

researchers use different classes of nonlinear description 

models, which are related to different types of nonlinear 

system problems. One specific class that includes a very 

large number of physical systems is related to time invariant 

descriptions with finite memory. Such descriptions form the 

Wiener class of nonlinear system models and is 

implemented in terms of Volterra functional series. The 

Wiener theory for nonlinear systems is based on 

orthogonalization of a specific complete set of time 

invariant operators called Volterra operators [6].  

Nonlinear system modeling with Volterra series was 

first proposed in [7] and was further extended in the works 

of Wiener [9, 10]. A rich bibliography sources for the 

application of the Volterra functional series model for 

analysis and design of nonlinear systems can be found in [6] 

and [5]. One of the main advantages of Volterra series 

models is the treatment of nonlinear systems in frequency 

domain. The so called generalized frequency response 

functions can be utilized for that purpose with the only 

restriction of using only finite number of Volterra terms by 

frequency truncation [4]. The order of the frequency domain 

Volterra series expansion refers to the order of the 

generalized frequency response function. Unfortunately, the 

derivation of high order Volterra series members is often 

computationally difficult task and requires extensive time 

and memory resources. 

Volterra series models obey simple synthesis rules. 

The Wiener model for a stable causal nonlinear system can 

be derived by using linear system models by connecting 

them in terms of simple multiplicative structural relations. 

The Volterra series can be expanded as a polynomial 

functional series which resemble direct generalization of the 

linear convolution integral [2, 4]. Therefore, we can 

consider the Volterra series model as an input-output 

operator, where the kernels are multilinear generalizations 
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of the impulse response function for linear systems [2]. The 

multilinear property of Volterra operators is this feature, 

which makes them particularly attractive for modeling 

nonlinear system behavior. In many nonlinear system 

applications, the usage of higher order Volterra series 

kernels is necessary in order to obtain a satisfactory 

truncation error, especially for severely nonlinear systems. 

Upper bounds for truncated Volterra series errors are 

provided in [2, 4], both in time and frequency domain, 

where conditions for series convergence are also discussed. 

In a recent publication, the application of Volterra series 

models for optimal model reduction of bilinear systems is 

discussed in [3]. The authors present a new framework for 

multipoint interpolation of the underlying Volterra series 

model and extend interpolation based conditions for optimal 

model reduction from the linear to the bilinear case. Model 

reduction for discrete-time bilinear systems is proposed in 

[8]. The presented method uses a frequency domain 

description, where the transfer function is expanded in terms 

of Laguerre functions basis. The Laguerre coefficients are 

computed recursively, thus avoiding cumbersome off-line 

computations. 

This paper considers the problem of Volterra series 

model approximation. The Volterra series are presented in 

time domain by using high order Volterra kernel 

representations. In order to avoid certain convergence 

properties and measurement problems with respect to the 

Volterra kernels, the Wiener approach for using G-

functionals is also presented. G-functionals of Wiener are 

orthogonal functions of time, when the input signal is a 

white gaussian noise. The Volterra as well as the Wiener 

kernels are approximated by using orthogonal polynomial 

series. The orthogonalization procedure is implemented by 

means of Legendre orthogonal series for difference with the 

widely used in practice Laguerre series representations. 

Legendre orthogonal series have the advantage of simple 

implementation, recursive procedure for the Fourier 

coefficients calculation, without using any weighting 

function under the integral, and finite definition interval, 

which is convenient for data points selection in practical 

implementations.  

2. Preliminaries on the Volterra series 

description 

The Volterra functional series is a basic model for 

nonlinear systems description. The Volterra model is an 

input/output model, where the nonlinear system is 

represented by the operator of Volterra as follows: 

(1) 𝑦(𝑡) = 𝐻[𝑢(𝑡)] = ∑ 𝐻𝑛
∞
𝑛=1 [𝑢(𝑡)], 

where 𝑦(𝑡) is the output signal, 𝑢(𝑡) is the input signal and 

𝐻𝑛(∙), 𝑛 = 1, 2, ⋯ is the Volterra operator of order 𝑛. In the 

Volterra series model, 𝐻𝑛 is an operator, which transforms 

the input signal into the output signal.  

The relation (1) can be represented in time domain 

by the following expression: 

(2) 𝑦(𝑡) = 

∑ ∫ ⋯ ∫ ℎ𝑛
∞

−∞

∞

−∞
∞
𝑛=1 (𝜏1, ⋯ , 𝜏𝑛) ∏ 𝑢(𝑡 − 𝜏𝑖)

𝑛
𝑖=1 𝑑𝜏𝑖, 

where the functions ℎ𝑛(𝜏1, ⋯ , 𝜏𝑛), 𝑛 = 1, 2, ⋯ are called 

Volterra kernels. The Volterra kernels are a generalized 

description of the impulse response for linear systems. The 

Volterra functional series model gives the opportunity to use 

operator theory for exploring nonlinear systems. The usage 

of nonlinear operators leads to defining the main structural 

transformations by analogy to the linear case. Parallel 

connection between two nonlinear elements:  

𝑦(𝑡) = 𝐻[𝑢(𝑡)] + 𝐺[𝑢(𝑡)],  

multiplicative connection:  

𝑦(𝑡) = 𝐻[𝑢(𝑡)]𝐺[𝑢(𝑡)] and  

cascade connection:  

𝑦(𝑡) = 𝐺[𝐻[𝑢(𝑡)]] = (𝐺 ∗ 𝐻)[𝑢(𝑡)],  

where 𝐺 and 𝐻 are nonlinear operators [5].  

The Volterra series model is a functional series model which 

is used for modeling nonlinear time-invariant systems with 

finite memory. The theory exploring such class of systems 

is called the Volterra-Wiener theory for nonlinear systems. 

Important properties of such class of systems are causality 

and stability [2, 6]. A system is causal, if for every input 

signal, the output system reaction in the current time 

moment does not depend on future values of the input 

signal.  

We define the causality condition by the following 

expression:  

(3) 𝑃𝑇𝐻𝑛𝑃𝑇 = 𝑃𝑇𝐻𝑛, 

where 𝑃𝑇  is the truncation operator, whose action on 

arbitrary signal 𝑥(𝑡) is determined as follows: 

(4) 𝑃𝑇𝑥(𝑡) = 𝑥𝑇(𝑡) = {
𝑥(𝑡), 𝑡 ≤ 𝑇

0, 𝑡 > 𝑇
. 

We can directly relate the causality property (3) to the 

physical realization of the system. Given system is 

physically realizable, if the past behavior uniquely 

determines the future behavior of the system. In terms of the 

Volterra kernels, the causality property of a given system is 

determined from the expression: 
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(5) ℎ𝑛(𝜏1, 𝜏2, ⋯ , 𝜏𝑛) = 0 for all 𝜏𝑖 < 0, 𝑖 = 1, 2, ⋯ , 𝑛. 

Therefore, the 𝑛-th order Volterra kernel for a causal 

system will be different from zero only in the first quadrant 

of the 𝑛-th dimensional system space. Another important 

property of the explored nonlinear systems is the stability 

property. The Volterra series model is an input/output 

system model and therefore, we define naturally the stability 

property as the BIBO stability of the nonlinear system, 

which means that for a bounded input signal, the output 

signal is also bounded. The sufficient condition for 

nonlinear system stability is that, all Volterra kernels satisfy 

the integral relation: 

(6) ∫ ⋯ ∫ |ℎ𝑛(𝜏1, 𝜏2, ⋯ , 𝜏𝑛)|
∞

−∞

∞

−∞
𝑑𝜏1𝑑𝜏2 ⋯ 𝑑𝜏𝑛 < ∞, 

        𝑛 = 1, 2, ⋯. 

We can use the Volterra series model for frequency 

domain description of nonlinear systems. The nonlinear 

system transfer function is obtained from the Volterra 

kernels Laplace transform and the nonlinear system 

frequency response is computed from the Volterra kernels 

Fourier transform. The Laplace transform for the 𝑛-th order 

Volterra kernel is given by the following expression: 

(7) 𝐻𝑛(𝑠1, ⋯ , 𝑠𝑛) = ∫ ⋯ ∫ ℎ𝑛
∞

0

∞

0
(𝜏1, ⋯ , 𝜏𝑛) × 

× 𝑒−(𝑠1𝜏1+⋯+𝑠𝑛𝜏𝑛)𝑑𝜏1 ⋯ 𝑑𝜏𝑛. 

The 𝑛-th order frequency response is described as 

follows: 

(8) 𝐻𝑛(𝑗𝜔1, ⋯ , 𝑗𝜔𝑛) = ∫ ⋯ ∫ ℎ𝑛
∞

0

∞

0
(𝜏1, ⋯ , 𝜏𝑛) × 

× 𝑒−𝑗(𝜔1𝜏1+⋯+𝜔𝑛𝜏𝑛)𝑑𝜏1 ⋯ 𝑑𝜏𝑛. 

We can compute the corresponding inverse Laplace 

and Fourier transforms by using the following expressions: 

(9) ℎ𝑛(𝜏1, ⋯ , 𝜏𝑛) =
1

(𝑗2𝜋)𝑛 ∫ ⋯
𝜎1+𝑗∞

𝜎1−𝑗∞
    

∫ 𝐻𝑛(𝑠1, ⋯ , 𝑠𝑛)𝑒(𝑠1𝜏1+⋯+𝑠𝑛𝜏𝑛)𝑑𝑠1 ⋯ 𝑑𝑠𝑛
𝜎𝑛+𝑗∞

𝜎𝑛−𝑗∞
. 

(10) ℎ𝑛(𝜏1, ⋯ , 𝜏𝑛) =
1

(2𝜋)𝑛 ∫ ⋯
∞

−∞
    

∫ 𝐻𝑛(𝑗𝜔1, ⋯ , 𝑗𝜔𝑛)𝑒𝑗(𝜔1𝜏1+⋯+𝜔𝑛𝜏𝑛)𝑑𝜔1 ⋯ 𝑑𝜔𝑛
∞

−∞
. 

3. Legendre orthogonal polynomials 

Orthogonal polynomials play an important role in 

approximation of continuous functions. Their application is 

based on the Weierstrass theorem, which claims that every 

continuous function defined on a bounded interval, can be 

approximated arbitrarily closely by a polynomial, whose 

order is determined by the required degree of accuracy. 

Therefore, every continuous function 𝑓 from the Hilbert 

vector space ℋ can be determined uniquely on the interval 

[𝑎, 𝑏] by the expression  

𝑓(𝑡) = ∑ 𝑑𝑛𝜓𝑛(𝑡)∞
𝑛=0 ,  

where 𝑑𝑛, 𝑛 = 0, 1, ⋯  are the Fourier coefficients of the 

function 𝑓(𝑡) with respect to the complete orthogonal 

system {𝜓𝑛}𝑛=0
∞ .  

We can normalize the orthogonal functions in order to 

fulfill the orthonormal condition: 

(11) ∫ 𝜑𝑛(𝑡)𝜑𝑚(𝑡)𝑑𝑡 = {
0 𝑓𝑜𝑟 𝑚 ≠ 𝑛
1 𝑓𝑜𝑟 𝑚 = 𝑛

𝑏

𝑎
, 

where 𝑎 and 𝑏 can be arbitrary numbers or infinity.  

The Hilbert space under consideration is 𝐿2[𝑎, 𝑏] and 

therefore, every approximated function 𝑓 ∈ 𝐿2[𝑎, 𝑏] 
satisfies the condition  

∫ 𝑓2(𝑡)
𝑏

𝑎
𝑑𝑡 < ∞.  

We can approximate the function 𝑓 in terms of 

orthogonal polynomial series as  

𝑓(𝑡) ≈ ∑ 𝑑𝑛𝜓𝑛(𝑡)𝑁
𝑛=0 ,  

where 𝑁 is the order of polynomial approximation, and the 

Fourier coefficients 𝑑𝑛, 𝑛 = 0, 1, ⋯ are calculated by the 

expression  

𝑑𝑛 = ∫ 𝑓(𝑡)𝜓𝑛(𝑡)𝑑𝑡
𝑏

𝑎
.  

The approximation error 𝜀𝑁 is determined from the 

expression [6]: 

(12) 𝜀𝑁 = [∫ 𝑓2(𝑡) − ∑ 𝑑𝑛
2𝑁

𝑛=0
𝑏

𝑎
]

1 2⁄

. 

One of the most frequently used orthogonal 

polynomial system for continuous functions approximation 

on the Hilbert space 𝐿2[𝑎, 𝑏] is the system of Legendre 

orthogonal polynomials. The Legendre polynomials form a 

complete set of orthogonal polynomials in the Hilbert space 

𝐿2[−1, 1] with constant weighting function 𝑤(𝑡) = 1 on the 

interval [−1, 1]. The Legendre polynomials are obtained by 

applying the Gram-Schmidt orthogonalization procedure 

over the linearly independent set {1, 𝑡, 𝑡2, ⋯ }.  

The Legendre polynomial of order 𝑛 is represented by 

using the Rodrigues’ formula as [1]: 

(13) 𝑃𝑛(𝑡) =
1

2𝑛𝑛!

𝑑𝑛

𝑑𝑡𝑛
(𝑡2 − 1)𝑛, 𝑛 = 1, 2, ⋯. 

The Legendre polynomials satisfy also the recurrent 

relation:  
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(14) 𝑃𝑛+1(𝑡) =
(2𝑛+1)𝑡𝑃𝑛(𝑡)−𝑛𝑃𝑛−1(𝑡)

𝑛+1
,  

𝑃0(𝑡) = 1,  

𝑃1(𝑡) = 𝑡,    𝑛 = 1, 2, ⋯. 

The Legendre polynomials are transformed into 

Legendre functions in order to satisfy the orthonormal 

condition as follows:  

𝜑𝑛 = √
2𝑛+1

2
𝑃𝑛.  

The first several Legendre polynomials on the interval 

[−1, 1] are represented as follows: 

𝑃0(𝑡) = 1,  

𝑃1(𝑡) = 𝑡,  

𝑃2(𝑡) =
3

2
(𝑡2 −

1

3
),  

𝑃3(𝑡) =
5

2
(𝑡3 −

3

5
𝑡),  

 𝑃4(𝑡) =
35

8
(𝑡4 −

6

7
𝑡2 +

3

35
),  

𝑃5(𝑡) =
63

8
(𝑡5 −

10

9
𝑡3 +

5

21
𝑡). 

In many practical cases, the time interval for function 

approximation is different than [−1, 1]. In such cases, the 

Legendre functions are scaled and the variable of integration 

is changed. For example, the complete set of Legendre 

functions, defined on the interval [0, 𝑇] are represented as 

follows: 

(15) 𝜑𝑛(𝑡) = √
2𝑛+1

2
𝑃𝑛(𝜏),  𝜏 =

2

𝑇
𝑡 − 1,  𝑡 ∈ [0, 𝑇]. 

Then, every continuous function defined on the 

interval [0, 𝑇] is approximated as: 

(16) 𝑓(𝑡) ≈ ∑ 𝑐𝑛√
2𝑛+1

2
𝑃𝑛 (

2

𝑇
𝑡 − 1)𝑁

𝑛=0 ,   

where 𝑐𝑛 = √
2𝑛+1

2
∫ 𝑓(𝑡)𝑃𝑛 (

2

𝑇
𝑡 − 1) 𝑑𝑡

𝑇

0
. 

4. Orthogonal approximation of 

nonlinear systems described by 

Volterra series 

We consider nonlinear systems described in terms of 

Volterra series, whose kernels are approximated by 

orthogonal polynomial series. This result follows from the 

fact that, every functional, which describes the nonlinear 

system, can be represented by orthogonal functions series, 

defined on the interval under consideration. The so obtained 

series model is an analog of the Fourier series model, where 

the orthogonal system of functions can be obtained by using 

two different approaches. The first approach is to build the 

complete system of orthogonal functions by using the space 

of functions with vector argument. The second approach is 

to build the functional descriptions by using certain 

procedure of orthogonalization, and thus building the G-

functionals of Wiener. We consider the first approach for 

orthogonalization, where the nonlinear system model is 

given by (1) in terms of the functionals (2). We assume that 

the system is stable and the first order kernel satisfies the 

condition  

∫ ℎ1
2∞

0
(𝑡)𝑑𝑡 < ∞.  

The Legendre series representation of this kernel on 

the interval [0, 𝑇] can be obtained by the expression  

ℎ1(𝑡) = ∑ 𝑐𝑛
∞
𝑛=0 𝜑𝑛(𝑡),  

where the Fourier coefficients are determined from the 

integral 

𝑐𝑛 = ∫ ℎ1(𝑡)𝜑𝑛(𝑡)𝑑𝑡
𝑇

0
.  

The second order Volterra kernel ℎ2(𝑡1, 𝑡2) is a 

function of two variables. If the Volterra series convergence 

condition is satisfied  

∫ ∫ ℎ2
2∞

0

∞

0
(𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2 < ∞,  

the Volterra kernel can be represented as  

ℎ2(𝑡1, 𝑡2) = ∑ ∑ 𝑐𝑛1𝑛2
𝜑𝑛1

∞
𝑛2=0

∞
𝑛1=0 (𝑡1)𝜑𝑛2

(𝑡2),  

where the Fouries coefficients are computed as follows:  

𝑐𝑛1𝑛2
= ∫ ∫ ℎ2(𝑡1, 𝑡2)

𝑇

0

𝑇

0
𝜑𝑛1

(𝑡1)𝜑𝑛2
(𝑡2)𝑑𝑡1𝑑𝑡2.  

By analogy, the Volterra kernel of order 𝑝 can be 

expanded in Legendre orthogonal series as: 

(17) ℎ𝑝(𝑡1, ⋯ , 𝑡𝑝) 

= ∑ ⋯ ∑ 𝑐𝑛1⋯𝑛𝑝
𝜑𝑛1

∞

𝑛𝑝=0

∞

𝑛1=0
(𝑡1) ⋯ 𝜑𝑛𝑝

(𝑡𝑝). 

with the corresponding Fourier coefficients computed as 

follows: 

(18)  𝑐𝑛1⋯𝑛𝑝
= 

∫ ⋯ ∫ ℎ𝑝(𝑡1 ⋯ 𝑡𝑝)
𝑇

0

𝑇

0
𝜑𝑛1

(𝑡1) ⋯ 𝜑𝑛𝑝
(𝑡𝑝)𝑑𝑡1 ⋯ 𝑑𝑡𝑝. 
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Numerical example 1. 

We consider the nonlinear time-invariant continuous-

time system, described by the Volterra series model  

𝑦(𝑡) = ∑ ∫ ⋯ ∫ ℎ𝑛(𝑡1 ⋯ 𝑡𝑛) ×
∞

−∞

∞

−∞

∞

𝑛=1
 

× ∏ 𝑢(𝑡 − 𝑡𝑖)𝑑𝑡𝑖
𝑛
𝑖=1 ,  

where the Volterra kernels are given as ℎ1(𝑡1) = 𝑒−𝑡11(𝑡1), 

ℎ2(𝑡1, 𝑡2) = 𝑒−𝑡1𝑒−𝑡21(𝑡1)1(𝑡2) and so on.  

The orthogonal expansion of the Volterra kernels in 

Legendre orthogonal series, where the order of 

approximation is 𝑁 = 1, is obtained as follows: 

ℎ1(𝑡1) = 𝑐0𝜑0(𝑡1) + 𝑐1𝜑1(𝑡2), 

with the Fourier coefficients obtained by the expressions: 

𝑐0 = √
1

2
∫ 𝑒−𝑡𝑇

0
𝑑𝑡,  

𝑐1 = √
3

2
∫ 𝑒−𝑡 (

2

𝑇
𝑡 − 1) 𝑑𝑡 = √

3

2

𝑇

0

2

𝑇
(1 − 𝑒−𝑇 − 𝑇𝑒−𝑇). 

The second order Volterra kernel is approximated as 

follows: 

 

 

 ℎ2(𝑡1, 𝑡2) = 𝑐00𝜑0(𝑡1)𝜑0(𝑡2) + 𝑐01𝜑0(𝑡1)𝜑1(𝑡2) + 𝑐10𝜑1(𝑡1)𝜑0(𝑡2) + 𝑐11𝜑1(𝑡1)𝜑1(𝑡2), 

where the Fourier coefficients are computed as follows: 

𝑐00 = √
1

2
√

1

2
∫ ∫ 𝑒−𝑡1𝑒−𝑡2𝑑𝑡1𝑑𝑡2

𝑇

0

𝑇

0
=

1

2
(1 − 𝑒−𝑇)2 , 

𝑐01 = √
1

2
√

3

2
∫ ∫ 𝑒−𝑡1

𝑇

0

𝑇

0
𝑒−𝑡2 (

2

𝑇
𝑡2 − 1) 𝑑𝑡1𝑑𝑡2 =

√3

2
(1 − 𝑒−𝑇) ((1 − 𝑒−𝑇) (

2

𝑇
− 1) − 2𝑒−𝑇), 

𝑐10 = √
1

2
√

3

2
∫ ∫ 𝑒−𝑡1

𝑇

0

𝑇

0
𝑒−𝑡2 (

2

𝑇
𝑡1 − 1) 𝑑𝑡1𝑑𝑡2 =

√3

2
(1 − 𝑒−𝑇) ((1 − 𝑒−𝑇) (

2

𝑇
− 1) − 2𝑒−𝑇), 

𝑐11 = √
3

2
√

3

2
∫ 𝑒−𝑡1𝑒−𝑡2 (

2

𝑇
𝑡1 − 1)

𝑇

0

(
2

𝑇
𝑡2 − 1) 𝑑𝑡1𝑑𝑡2   =

3

2
((1 − 𝑒−𝑇) (

2

𝑇
− 1) − 2𝑒−𝑇)

2

. 

The orthogonal approximation of the third order Volterra kernel is obtained as follows: 

ℎ3(𝑡1, 𝑡2, 𝑡3) = 𝑐000𝜑0(𝑡1)𝜑0(𝑡2)𝜑0(𝑡3) + 𝑐001𝜑0(𝑡1)𝜑0(𝑡2)𝜑1(𝑡3) + 𝑐010𝜑0(𝑡1)𝜑1(𝑡2)𝜑0(𝑡3)

+ 𝑐011𝜑0(𝑡1)𝜑1(𝑡2)𝜑1(𝑡3) + 𝑐100𝜑1(𝑡1)𝜑0(𝑡2)𝜑0(𝑡3) + 𝑐101𝜑1(𝑡1)𝜑0(𝑡2)𝜑1(𝑡3)

+ 𝑐110𝜑1(𝑡1)𝜑1(𝑡2)𝜑0(𝑡3) + 𝑐111𝜑1(𝑡1)𝜑1(𝑡2)𝜑1(𝑡3) 

with the corresponding Fourier coefficients computed as follows: 

𝑐000 = √
1

2
√

1

2
√

1

2
∫ ∫ ∫ 𝑒−𝑡1

𝑇

0

𝑇

0

𝑇

0
𝑒−𝑡2𝑒−𝑡3𝑑𝑡1𝑑𝑡2𝑑𝑡3 =

1

2√2
(1 − 𝑒−𝑇)3, 

𝑐001 = 𝑐010 = 𝑐100 = √
1

2
√

1

2
√

3

2
∫ ∫ ∫ 𝑒−𝑡1𝑒−𝑡2𝑒−𝑡3

𝑇

0

𝑇

0

𝑇

0

(
2

𝑇
𝑡3 − 1) 𝑑𝑡1𝑑𝑡2𝑑𝑡3 = 

√3

2√2
(1 − 𝑒−𝑇)2 [(1 − 𝑒−𝑇) (

2

𝑇
− 1) − 2𝑒−𝑇], 

𝑐011 = 𝑐101 = 𝑐110 = √
1

2
√

3

2
√

3

2
∫ ∫ ∫ 𝑒−𝑡1𝑒−𝑡2

𝑇

0

𝑇

0

𝑇

0

(
2

𝑇
𝑡2 − 1) 𝑒−𝑡3 (

2

𝑇
𝑡3 − 1) 𝑑𝑡1𝑑𝑡2𝑑𝑡3 = 

3

2√2
(1 − 𝑒−𝑇) [(1 − 𝑒−𝑇) (

2

𝑇
− 1) − 2𝑒−𝑇]

2

, 
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𝑐111 = √
3

2
√

3

2
√

3

2
∫ ∫ ∫ 𝑒−𝑡1 (

2

𝑇
𝑡1 − 1)

𝑇

0

𝑇

0

𝑇

0
𝑒−𝑡2 (

2

𝑇
𝑡2 − 1) 𝑒−𝑡3 (

2

𝑇
𝑡3 − 1) 𝑑𝑡1𝑑𝑡2𝑑𝑡3 =

3√3

2√2
[(1 − 𝑒−𝑇) (

2

𝑇
− 1) − 2𝑒−𝑇]

3

.

Analogically, we determine the orthogonal 

approximations with Legendre polynomial series the 

Volterra kernels of order four and higher. 

5. Orthogonal approximation of 

nonlinear systems described by 

Wiener G-functionals 

The main difficulties in describing nonlinear systems 

by Volterra series is the Volterra kernels measurement and 

the power series limited convergence properties. The 

measurement difficulty is related to the fact that 

measurement is possible only when each Volterra operator 

contribution can be separated from the total system 

response. However, there is no method for separating the 

Volterra operator contributions for infinite order systems. 

Another problem is concerned with the convergence 

properties of the Volterra series. It is well known that the 

Volterra series description is convergent only for a limited 

range of the system input amplitude. The convergence 

properties of the Volterra series model are similar to the 

convergence properties of Taylor series descriptions, since 

the Volterra series is Taylor series with memory. In order to 

overcome these difficulties, Wiener introduced a new type 

functionals, which are orthogonal for a certain type of input 

signals and are called G-functionals. G-functionals of 

Wiener are orthogonal functions of time, when the input 

signal is a white gaussian noise.  

G-functionals of Wiener are nonhomogeneous, i.e., 

the input signal magnitude change leads not only to output 

signal magnitude change, but also the output signal form 

changes, leading to the following relation: 

𝐻𝑛[𝑐𝑥(𝑡)] ≠ 𝑐𝑛𝐻𝑛[𝑥(𝑡)]. 

The Volterra operator of zero order is defined by the 

expression  

𝐻0[𝑥(𝑡)] = ℎ0.  

The nonhomogeneous Volterra functional of first 

order is defined as follows [6]:  

(19) 𝑔1[ℎ1, ℎ0(1); 𝑥(𝑡)] = 𝐻1[𝑥(𝑡)] + 𝐻0(1)[𝑥(𝑡)]. 

The nonhomogeneous Volterra functional of second 

order is defined by the expression: 

(20) 𝑔2[ℎ2, ℎ1(2), ℎ0(2); 𝑥(𝑡)] = 𝐻2[𝑥(𝑡)] +

𝐻1(2)[𝑥(𝑡)] + 𝐻0(2)[𝑥(𝑡)]. 

In the general case, the nonhomogeneous Volterra 

functional of arbitrary order is defined as follows: 

(21) 𝑔𝑝[ℎ𝑝, ℎ𝑝−1(𝑝), ⋯ , ℎ0(𝑝); 𝑥(𝑡)] = ∑ 𝐻𝑛(𝑝)
𝑝
𝑛=0 [𝑥(𝑡)], 

where 𝐻𝑛(𝑝)[𝑥(𝑡)] are the corresponding nonhomogeneous 

Volterra operators.  

G-functionals of Wiener are a set of Volterra functionals  

𝑔𝑝[𝑘𝑝, 𝑘𝑝−1(𝑝), ⋯ , 𝑘0(𝑝); 𝑥(𝑡)],  

for which the additional orthogonality conditions are 

satisfied  

𝜀{𝐻𝑚[𝑥(𝑡)]𝑔𝑛[𝑘𝑛, 𝑘𝑛−1,(𝑛), ⋯ , 𝑘0,(𝑛); 𝑥(𝑡)]} = 0 

for 𝑚 < 𝑛,  

where with 𝜀{∙} we denote the mean value of the expression 

in the middle parenthesis and 𝑥(𝑡) is a white Gaussian time 

function with autocorrelation 𝜙𝑥𝑥(𝑡) = 𝛼𝛿(𝑡).  

For the G-functional of order zero, the following expression 

is valid:  

𝐺0[𝑘0; 𝑥(𝑡)] = 𝑘0,  

where 𝑘0 is a constant, whose value depends on the input 

signal 𝑥(𝑡). The G-functional of first order is the 

corresponding nonhomogeneous Volterra operator of first 

order [6]:  

(22) 𝑔1[𝑘1, 𝑘0(1); 𝑥(𝑡)] = 𝐾1[𝑥(𝑡)] + 𝐾0(1)[𝑥(𝑡)], 

where 𝐾[𝑥(𝑡)] are Wiener operators with the additional 

orthogonality condition:  

𝜀{𝐻0[𝑥(𝑡)]𝑔1[𝑘1, 𝑘0(1); 𝑥(𝑡)]} = 0,  

which is determined for a white gaussian noise as an input 

signal. This condition is determined from the relation:  

(23) 𝜀{𝐻0[𝑥(𝑡)]𝑔1[𝑘1, 𝑘0(1); 𝑥(𝑡)]} =

ℎ0 ∫ 𝑘1(𝜏1)𝜀{𝑥(𝑡 − 𝜏1)}
∞

−∞
𝑑𝜏1 + ℎ0𝑘0(1) = 0. 

from which it follows that, 𝑘0(1) = 0, since 𝜀{𝑥(𝑡)} = 0. 

So, for the Wiener operator of first order we obtain the 

expression: 

(24) 𝐺1[𝑘; 𝑥(𝑡)] = ∫ 𝑘1(𝜏1)
∞

−∞
𝑥(𝑡 − 𝜏1)𝑑𝜏1.  

The G-functional of second order is the corresponding 

nonhomogeneous Volterra operator of second order [6]: 

(25) 𝑔2[𝑘2, 𝑘1(2), 𝑘0(2); 𝑥(𝑡)] = 𝐾2[𝑥(𝑡)] +
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𝐾1(2)[𝑥(𝑡)] + 𝐾0(2)[𝑥(𝑡)],  

where the following additional conditions are satisfied: 

𝜀{𝐻0[𝑥(𝑡)]𝑔2[𝑘2, 𝑘1(2), 𝑘0(2); 𝑥(𝑡)]} = 0, 

𝜀{𝐻1[𝑥(𝑡)]𝑔2[𝑘2, 𝑘1(2), 𝑘0(2); 𝑥(𝑡)]} = 0.  

It can be shown, that the first condition leads to 

condition for the Wiener kernel of zero order  

𝑘0(2) = −𝛼 ∫ 𝑘2(𝜏, 𝜏)𝑑𝜏
∞

−∞
,  

where 𝛼 is the white noise intensity. From the second 

condition follows that 𝑘1(2)(𝜏1) = 0. So, we obtain for the 

second order Wiener operator [6]: 

(26) 𝐺2[𝑘2; 𝑥(𝑡)] = ∫ ∫ 𝑘2
∞

−∞

∞

−∞
(𝜏1, 𝜏2)𝑥(𝑡 − 𝜏1)𝑥(𝑡 −

𝜏2)𝑑𝜏1𝑑𝜏2 − 𝛼 ∫ 𝑘2(𝜏, 𝜏)
∞

−∞
𝑑𝜏. 

Analogically, we obtain the Wiener operators of 

higher order. The output signal of the Wiener series model 

is obtained as follows:  

𝑦(𝑡) = ∑ 𝐺𝑛[𝑘𝑛; 𝑥(𝑡)]∞
𝑛=0 ,  

where the nonzero kernels are as follows [6]: for the 𝐺0 

Wiener operator, it is 𝑘0, for the 𝐺1 Wiener operator it is 𝑘1, 

for the 𝐺2 they are 𝑘0(2) and 𝑘2, for the 𝐺3 they are 𝑘1(3) and 

𝑘3, for 𝐺4 they are 𝑘0(4) and 𝑘4, for the 𝐺5 they are 𝑘1(5), 

𝑘3(5) and 𝑘5, etc., where the kernels are determined from the 

orthogonality conditions. It can be shown that, the derived 

Wiener kernels are obtained from the leading Wiener 

kernels as follows [6]: 

𝑘0(2) = −𝛼 ∫ 𝑘2(𝜏, 𝜏)𝑑𝜏
∞

−∞
,  

𝑘1(3)(𝜏1) = −3𝛼 ∫ 𝑘3
∞

−∞
(𝜏1, 𝜏, 𝜏)𝑑𝜏,   

𝑘2(4)(𝜏1, 𝜏2) = −6𝛼 ∫ 𝑘4(𝜏1, 𝜏2, 𝜏, 𝜏)𝑑𝜏
∞

−∞
, 𝑘0(4) =

3𝛼2 ∫ ∫ 𝑘4(𝜏1, 𝜏1, 𝜏2, 𝜏2)𝑑𝜏1
∞

−∞

∞

−∞
𝑑𝜏2, 

𝑘3(5)(𝜏1, 𝜏2, 𝜏3) = −10𝛼 ∫ 𝑘5(𝜏1, 𝜏2, 𝜏3, 𝜏, 𝜏)𝑑𝜏
∞

−∞
, 

𝑘1(5) = 15𝛼2 ∫ ∫ 𝑘5(𝜏1, 𝜏2, 𝜏2, 𝜏3, 𝜏3)𝑑𝜏2𝑑𝜏3
∞

−∞

∞

−∞
, etc., 

where 𝛼 is the white noise intensity. The relation between 

Wiener and Volterra kernels are given as follows [6]:  

ℎ0 = 𝑘0 + 𝑘0(2) + 𝑘0(4), ℎ1 = 𝑘1 + 𝑘1(3) + 𝑘1(5),  

ℎ2 = 𝑘2 + 𝑘2(4), ℎ3 = 𝑘3 + 𝑘3(5), ℎ4 = 𝑘4, ℎ5 = 𝑘5, etc.  

It is clear that, all Wiener kernels with indices in brackets 

(derived Wiener kernels) can be obtained from kernels with 

indices without brackets (leading Wiener kernels). 

Therefore, it is necessary to obtain orthogonal series 

development only for Wiener kernels with indices without 

brackets. For obtaining the Legendre orthogonal series 

representation for Wiener operators, we can use the 

Legendre orthogonal series representations for Volterra 

operators. In this sense, 𝑘3 = ℎ3 − 𝑘3(5) and since 𝑘5 = ℎ5, 

we obtain: 

𝑘3(𝜏1, 𝜏2, 𝜏3) = ℎ3(𝜏1, 𝜏2, 𝜏3)

+ 10𝛼 ∫ ℎ5(𝜏1, 𝜏2, 𝜏3, 𝜏, 𝜏)𝑑𝜏
∞

−∞

. 

We assume that the system is causal and stable.  

With respect to the Wiener kernels, these conditions are 

determined as:  

𝑘𝑛(𝜏1, ⋯ , 𝜏𝑛) = 0,  

for every 𝜏𝑖 < 0, 𝑖 = 0, 1, 2, ⋯ (the causality condition) and 

also  

∫ ⋯ ∫ |𝑘𝑛(𝜏1, ⋯ , 𝜏𝑛)|𝑑𝜏1 ⋯ 𝑑𝜏𝑛 < ∞
∞

−∞

∞

−∞
,  

for 𝑛 = 0, 1, 2, ⋯ (the stability condition).  

Then, every Wiener operator can be represented by 

Legendre orthogonal polynomial series on the interval [0, 𝑇] 
as follows [6]: 

(27) 𝑘𝑝(𝜏1, ⋯ , 𝜏𝑝) =

∑ ⋯ ∑ 𝑐𝑛1⋯𝑛𝑝
𝜑𝑛1

(𝜏1)∞
𝑛𝑝=0

∞
𝑛1=0 ⋯ 𝜑𝑛𝑝

(𝜏𝑝), 

where the Fourier coefficients are computed as follows: 

(28) 𝑐𝑛1⋯𝑛𝑝
= ∫ …

𝑇

0
 

              ∫ 𝑘𝑝(𝜏1, ⋯ , 𝜏𝑝)𝜑𝑛1
(𝜏1) ⋯ 𝜑𝑛𝑝

(𝜏𝑝)𝑑𝜏1 ⋯ 𝑑𝜏𝑝.
𝑇

0

 

The Wiener operator are determined as follows [6]: 

(29) 𝐺𝑝[𝑘𝑝; 𝑥(𝑡)] = 

𝐺𝑝 [∑ ⋯ ∑ 𝑐𝑛1⋯𝑛𝑝
𝜑𝑛1

(𝜏1)
∞

𝑛𝑝=0

∞

𝑛1=0
⋯ 𝜑𝑛𝑝

(𝜏𝑝); 𝑥(𝑡)]. 

where due to the linearity property of the parallel 

connection, we can write: 

(30) 𝐺𝑝[𝑘𝑝; 𝑥(𝑡)] = 

∑ ⋯ ∑ 𝑐𝑛1⋯𝑛𝑝
𝐺𝑝 [𝜑𝑛1

(𝜏1) ⋯ 𝜑𝑛𝑝
(𝜏𝑝); 𝑥(𝑡)]

∞

𝑛𝑝=0

∞

𝑛1=0
. 

In order to determine the zero order kernel, we can 

obtain:  
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𝑘0 = 𝑦̅(𝑡)  

or this is the mean value of the output signal, where the input 

signal is white Gaussian noise with intensity 𝛼. The Wiener 

kernel of first order can be obtained as  

𝑘1(𝑡) = ∑ 𝑐𝑛
∞
𝑛=0 𝜑𝑛(𝑡),  

where 𝑐𝑛 = ∫ 𝑘1
𝑇

0
(𝑡)𝜑𝑛(𝑡)𝑑𝑡.  

For the second order Wiener kernel, we obtain 

𝑘2(𝜏1, 𝜏2) = ∑ ∑ 𝑐𝑛1𝑛2
∞
𝑛2=0

∞
𝑛1=0 𝜑𝑛1

(𝜏1)𝜑𝑛2
(𝜏2),  

for the Fourier coefficient of second order, we obtain:  

𝑐𝑛1𝑛2
= ∫ ∫ 𝑘2(𝜏1, 𝜏2)

𝑇

0

𝑇

0
𝜑𝑛1

(𝜏1)𝜑𝑛2
(𝜏2)𝑑𝜏1𝑑𝜏2,  

etc. 

Numerical example 2. 

We consider the nonlinear time-invariant continuous-

time system, described by the Wiener G-functionals  

𝑦(𝑡) = ∑ 𝐺𝑛[𝑘𝑛; 𝑥(𝑡)]∞
𝑛=0 .  

The Wiener kernels are given as follows:  

𝑘1(𝜏1) = 𝑒−𝜏11(𝜏1),  

𝑘2(𝜏1, 𝜏2) = 𝑒−𝜏1𝑒−2𝜏21(𝜏1)1(𝜏2),  

𝑘3(𝜏1, 𝜏2, 𝜏3) = 𝑒−𝜏1𝑒−2𝜏2𝑒−3𝜏31(𝜏1)1(𝜏2)1(𝜏3),  

etc.  

We consider the Legendre orthogonal series 

representation of Wiener kernels, where the approximation 

order is 𝑁 = 1.  

𝑘𝑝(𝜏1, ⋯ , 𝜏𝑝) =

∑ ⋯ ∑ 𝑐𝑛1⋯𝑛𝑝
𝜑𝑛1

(𝜏1)∞
𝑛𝑝=0

∞
𝑛1=0 ⋯ 𝜑𝑛𝑝

(𝜏𝑝), 

For example, the first order Wiener kernel in Legendre 

orthogonal polynomials series is determined as follows:  

𝑘1(𝜏1) = 𝑐0𝜑0(𝜏1) + 𝑐1𝜑1(𝜏1), 

where the Fourier coefficients are determined as follows: 

𝑐0 = √
1

2
∫ 𝑒−𝜏𝑇

0
𝑑𝜏 = √

1

2
(1 − 𝑒−𝑇), 

𝑐1 = √
3

2
∫ 𝑒−𝜏 (

2

𝑇
𝜏 − 1) 𝑑𝜏 = √

3

2

𝑇

0

2

𝑇
(1 − 𝑒−𝑇 − 𝑇𝑒−𝑇). 

The second order Wiener kernels developed in 

Legendre orthogonal polynomials series are obtained as 

follows: 

 

𝑘2(𝜏1, 𝜏2) = 𝑐00𝜑0(𝜏1)𝜑0(𝜏2) + 𝑐01𝜑0(𝜏1)𝜑1(𝜏2) + 𝑐10𝜑1(𝜏1)𝜑0(𝜏2) + 𝑐11𝜑1(𝜏1)𝜑1(𝜏2). 

The corresponding Fourier coefficients are computed as follows:  

𝑐00 = √
1

2
√

1

2
∫ ∫ 𝑒−𝜏1𝑒−2𝜏2

𝑇

0

𝑇

0
𝑑𝜏1𝑑𝜏2 =

1

4
(1 − 𝑒−𝑇)(1 − 𝑒−2𝑇), 

𝑐01 =
√3

2
∫ ∫ 𝑒−𝜏1𝑒−2𝜏2

𝑇

0

𝑇

0
(

2

𝑇
𝜏2 − 1) 𝑑𝜏1𝑑𝜏2 =

√3

4𝑇
(1 − 𝑒−𝑇)(1 − 𝑇 − (1 + 𝑇)𝑒−2𝑇), 

𝑐10 =
√3

2
∫ ∫ 𝑒−𝜏1 (

2

𝑇
𝜏1 − 1) 𝑒−2𝜏2𝑑𝜏1𝑑𝜏2 =

√3

4

𝑇

0

𝑇

0
(1 − 𝑒−2𝑇)(2 − 𝑇 − (2 + 𝑇)𝑒−𝑇), 

𝑐11 =
3

2
∫ ∫ 𝑒−𝜏1 (

2

𝑇
𝜏1 − 1) 𝑒−2𝜏2 (

2

𝑇
𝜏2 − 1) 𝑑𝜏1𝑑𝜏2 =

3

4𝑇2

𝑇

0

𝑇

0
(2 − 𝑇 − (2 + 𝑇)𝑒−𝑇)(1 − 𝑇 − (1 + 𝑇)𝑒−𝑇). 

The third order Wiener kernels developed in Legendre orthogonal polynomials series are obtained as follows: 

𝑘3(𝑡1, 𝑡2, 𝑡3) = 𝑐000𝜑0(𝑡1)𝜑0(𝑡2)𝜑0(𝑡3) + 𝑐001𝜑0(𝑡1)𝜑0(𝑡2)𝜑1(𝑡3) + 𝑐010𝜑0(𝑡1)𝜑1(𝑡2)𝜑0(𝑡3)

+ 𝑐011𝜑0(𝑡1)𝜑1(𝑡2)𝜑1(𝑡3) + 𝑐100𝜑1(𝑡1)𝜑0(𝑡2)𝜑0(𝑡3) + 𝑐101𝜑1(𝑡1)𝜑0(𝑡2)𝜑1(𝑡3)

+ 𝑐110𝜑1(𝑡1)𝜑1(𝑡2)𝜑0(𝑡3) + 𝑐111𝜑1(𝑡1)𝜑1(𝑡2)𝜑1(𝑡3) 

The corresponding Fourier coefficients are computed as follows: 

𝑐000 = √
1

2
√

1

2
√

1

2
∫ ∫ ∫ 𝑒−𝜏1

𝑇

0
𝑒−2𝜏2𝑒−3𝜏3𝑑𝜏1𝑑𝜏2𝑑𝜏3

𝑇

0

𝑇

0
=

1

12√2
(1 − 𝑒−𝑇)(1 − 𝑒−2𝑇)(1 − 𝑒−3𝑇), 
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𝑐001 =
√3

2√2
∫ ∫ ∫ 𝑒−𝜏1𝑒−2𝜏2

𝑇

0

𝑇

0

𝑇

0
𝑒−3𝜏3 (

2

𝑇
𝜏3 − 1) 𝑑𝜏1𝑑𝜏2𝑑𝜏3 =

√3

4√2
(1 − 𝑒−𝑇)(1 − 𝑒−2𝑇) [

2

9𝑇
(1 − 𝑒−3𝑇) −

2

3
𝑒−3𝑇], 

𝑐010 =
√3

2√2
∫ ∫ ∫ 𝑒−𝜏1

𝑇

0

𝑇

0
𝑒−2𝜏2 (

2

𝑇
𝜏2 − 1)

𝑇

0
𝑒−3𝜏3𝑑𝜏1𝑑𝜏2𝑑𝜏3 =

1

2√6
(1 − 𝑒−𝑇)(1 − 𝑒−2𝑇) [

1−𝑇

2𝑇
(1 − 𝑒−2𝑇) − 𝑒−2𝑇], 

𝑐011 =
3

2√2
∫ ∫ ∫ 𝑒−𝜏1𝑒−2𝜏2

𝑇

0

𝑇

0

𝑇

0

(
2

𝑇
𝜏2 − 1) 𝑒−3𝜏3 (

2

𝑇
𝜏3 − 1)  𝑑𝜏1𝑑𝜏2𝑑𝜏3 =

3

2√2
(1 − 𝑒−𝑇) × 

× [
1−𝑇

2𝑇
(1 − 𝑒−2𝑇) − 𝑒−2𝑇] [

2−3𝑇

9𝑇
(1 − 𝑒−3𝑇) −

2

3
𝑒−3𝑇],  

𝑐100 =
√3

2√2
∫ ∫ ∫ 𝑒−𝜏1 (

2

𝑇
𝜏1 − 1) 𝑒−2𝜏2𝑒−3𝜏3𝑑𝜏1𝑑𝜏2𝑑𝜏3 =

1

4√6
(1 − 𝑒−2𝑇)(1 − 𝑒−3𝑇)

𝑇

0

𝑇

0

𝑇

0
[

2−𝑇

𝑇
(1 − 𝑒−𝑇) − 2𝑒−𝑇], 

𝑐101 =
3

2√2
∫ ∫ ∫ 𝑒−𝜏1 (

2

𝑇
𝜏1 − 1) 𝑒−2𝜏2𝑒−3𝜏3 (

2

𝑇
𝜏3 − 1) 𝑑𝜏1𝑑𝜏2𝑑𝜏3

𝑇

0

𝑇

0

𝑇

0

=
3

4√2
(1 − 𝑒−𝑇) × 

× [
2−𝑇

𝑇
(1 − 𝑒−𝑇) − 2𝑒−𝑇] [

2−3𝑇

9𝑇
(1 − 𝑒−3𝑇) −

2

3
𝑒−3𝑇],  

𝑐110 =
3

2√2
∫ ∫ ∫ 𝑒−𝜏1 (

2

𝑇
𝜏1 − 1) 𝑒−2𝜏2 (

2

𝑇
𝜏2 − 1) 𝑒−3𝜏3

𝑇

0

𝑇

0

𝑇

0

 𝑑𝜏1𝑑𝜏2𝑑𝜏3 =
1

2√2
(1 − 𝑒−3𝑇) × 

× [
2−𝑇

𝑇
(1 − 𝑒−𝑇) − 2𝑒−𝑇] [

1−𝑇

2𝑇
(1 − 𝑒−2𝑇) − 𝑒−2𝑇], 

𝑐111 =
3√3

2√2
∫ ∫ ∫ 𝑒−𝜏1 (

2

𝑇
𝜏1 − 1) 𝑒−2𝜏2 (

2

𝑇
𝜏2 − 1) 𝑒−3𝜏3

𝑇

0

𝑇

0

𝑇

0

(
2

𝑇
𝜏3 − 1) 𝑑𝜏1𝑑𝜏2𝑑𝜏3 = 

3√3

2√2
[

2−𝑇

𝑇
(1 − 𝑒−𝑇) − 2𝑒−𝑇] [

1−𝑇

2𝑇
(1 − 𝑒−2𝑇) − 𝑒−2𝑇] [

2−3𝑇

9𝑇
(1 − 𝑒−3𝑇) −

2

3
𝑒−3𝑇].  

 

6. Conclusion 

The paper considers the problem of orthogonal 

approximation of the Volterra and Wiener kernels for 

nonlinear system descriptions. The Volterra series model for 

describing nonlinear systems is presented and its 

convergence properties are discussed. The paper considers 

also the Wiener G-functionals representation for nonlinear 

system modeling. The orthogonal approximation of the 

presented models is developed in time domain by using the 

Legendre orthogonal polynomials. The basic advantages of 

using the Legendre series model are its computational 

efficiency in terms of simple recurrence relations and the 

possibility for approximation continuous functions on a finite 

interval of time. Formulas for computing the Fourier 

coefficients in the orthogonal series representations are 

developed. Numerical examples for the orthogonal series 

model of order 𝑁 = 1 for the nonlinear system with kernels 

up to third order are presented.
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