
3 201720 information technologies
and control

Quick Implementation of Definite
Integrals Computation with Very High
Precision

V. Dzhambov

Key Words: High precision computation; parallel computations;
numerical quadrature; computational mathematics; .NET Frame-
work; X-MPIR.

Abstract. An exceptionally effective implementation using parallel
computations with two perspective quadrature schemes in a specif-
ic environment, namely .NET Framework, is discussed. Compara-
tive tests are carried out demonstrating the possibility for effective
computations with very high precision with specific tools of the en-
vironment being used. This paper describes a part of the research
undertaken for the purpose of creating a tool library for arbitrary
precision calculations [1]. The main goal is to demonstrate that
very useful and mutually complementing computational tools, solv-
ing non-trivial problems with high precision computations may be
implemented in a concrete environment, which is wide spread for
personal computers, but underestimated by the software develop-
ers of scientific applications.

Introduction

High precision (and the more so as arbitrary precision)
computation is not of engineering purpose. Such computa-
tions, in particular, concerning definite integrals, are used in
so called "experimental mathematics". One of the main rea-
sons is the possibility of applying to the result an algorithm of
type "identification of constant", including as an integral part
"integer relation detection" algorithm (such as PSLQ), the lat-
ter requiring very high precision. Methods here presented are
especially designed to use resources and tools, provided by
.NET Framework. Effective implementation of two perspec-
tive quadrature schemes is discussed – Clenshaw-Curtis and
tanh-sinh schemes. Our goal is to show that effective solution
of non-trivial problems can be performed in this environment,
which is wide spread for desktop and laptop computers, but
underestimated as developing environment for scientific soft-
ware. The general structure description of the program system
involved and some extensions of the underlying main library,
using .NET Framework C# + XMPIR, can be found in [1],
but also shortly described below as suggested by one of ref-
erees. More details can be found in [1], related to quadrature
schemes used, as well as key fragments of program code, re-
lated to the specific implementations, using parallel compu-
tations.

About the Quadrature Schemes Used
in the Program System

From practical point of view the problem of finding

the numerical value of a given definite integral with a spec-
ified precision is almost never reduced to a single-time ap-
plication of one particular quadrature formula. Probably the
greatest advantage for a specific quadrature scheme is the
possibility of using data from calculations already previous-
ly done. In this sense the quadrature schemes of type tanh-
sinh, a variant of the Double Exponential Transformation,
or of type Clenshaw-Curtis have some advantage before the
schemes using Gaussian type quadrature. Former may use
already calculated abscissae and the values of the integrand
in the next levels. At the tahh-sinh quadrature already cal-
culated before weights may be used also but this is not of
crucial importance. In Gaussian type quadratures rules like
the Gauss-Kronrod are а step ahead, nevertheless if repeated
calculation with greater and greater accuracy is needed this
is not sufficient. In the general case, for different particular
problems, the most appropriate type of quadrature scheme
is different. Tanh-sinh is the best scheme for numerical in-
tegration of functions with singularities in the interval ends
with requirements for high precision (1000 and more digits,
[8]). It and its implementation without parallel computations
have been already discussed in [2]. Here will be considered
in some more details the Clenshaw-Curtis formula. The
heuristic foundation of its exclusive effectiveness for some
classes of integrands is the fact, that it may be interpreted
like an interpolation quadrature formula not with algebraic
polynomials, but with trigonometrical ones. In case when
the integrand may be reduced to a smooth periodic func-
tion integrated for the interval equal to the period a result of
the type "Paley-Wiener theorem" gives reasons exponential
convergence to be expected with regard to the number of
points in the quadrature formula. Besides if the integrand
has n-th derivative with bounded variation (V) in the inter-
val the convergence speed for both – Gaussian and Clen-
shaw-Curtis formulae for N points is the same, O (V(2N)-n).
This fact refutes existing prejudices, related to the effective-
ness of this formula, perceived only as algebraic order of
accuracy [4,5]. An up-to-date concept is presented in [3]

In general both schemes used give exponential con-
vergence, when applicable, concerning the number of points
in the quadrature formula but the tanh-sinh scheme is of
greater scope. It so to say regularizes the singularities in at
the ends of the interval, transferring them to infinity. On the
other hand the Clenshaw-Curtis scheme, where applicable,
is much more effective. It is not surprising – narrower class
of admissible functions – smoothness and bounded variation
of derivatives are required.

Print ISSN: 1312-2622; Online ISSN: 2367-5357
DOI: 10.1515/itc-2017-0030

3 2017 21information technologies
and control

In the program system being presented a special
graphical program tool NQTS, described in [2], as well as
two console tools – THSHPar, CCPar are implemented. Par-
allel computations are used in THSHPar and CCPar. THSH-
Par uses the Double Exponential Transformation method.
CCPar uses the Clenshaw-Curtis quadrature scheme.

Using the Multi Core Architecture

Some preliminary details concerning base tools
used for arbitrary precision computations. The possibili-
ty to use arbitrary precision computation library (MPIR [9],
calling from C# in .Net Framework environment), generat-
ed from C source code is crucial (XMPIR, [10]). Detailed
description can be found in [10]. As a result, dll fi les are
generated (using mpir.c, mpir.h), enabling calls from C# via
binding fi le (xmpir.cs). Unfortunately, this procedure don't
include recently issued MPIR version. Details, below.

Specifi c modifi cations. Using quadrature schemes
allowing parallel computations to be applied is one of the
resources for speedup – the "theoretical" one. However the
"practical" one, related to software adequacy, is important too.
In this specifi c case some corrections had to be made in the
generation of the dynamic library fi les of the MPIR library as
well as in the wrapper fi le xmpir.cs.. In the original of 2010
Sergey Bochkanov uses versions of the static libraries gener-
ated by a quite old version of MPIR. The latest 2.7.0 is from
June, 29, 2015. A possibility is provided libraries to be gener-
ated, which to be tuned and optimized for a particular variant
of the processor. In this version however signatures of many
functions are changed, e.g. in functions with mixed operands
– integers with fi xed and arbitrary precision, fi xed integers
with or without sign already correspond to C# types Int64 и
UInt64. This imposed multiple changes in fi les ’mpir.c’, used
for dynamic library generation and ‘xmpir.cs’ used for linkage
at call by C# code, so that they correspond to the head fi le
‘mpir.h’, received at the generation of the static library. The
result is generation of dynamic library which is about 70%
faster than the original for the particular processor.

Implementation for the tanh-sinh scheme. In the
tanh-sinh scheme the nodes and weights do not depend
on the integrand and the implementation of their parallel
computation is almost straightforward. In such type of par-
allelization however the usage of independent objects and
strict following for the manipulation of the current precision
of the respective methods is a nicety. It should not handle
with changes in the default precision – global variable for
the MPIR library. If at some places computations with dif-
ferent precision are necessary this should be done locally
at the initialization of the respective variable – mpf_init2
(precision).

An object of type thsh is in advance formed and in-
cludes the necessary lists, void, with abscissae and weights –
thsh.xc и thsh.wc. Finally the eff ective number of abscissae
and weights – npmax, necessary further is defi ned. A class
XW is created whose basic method xw calculates the abscis-
sae and weights in a given interval [idx1, idx2). It is realized
quite economically. Abscissae and weights are

but sinh and exp are called only once in each cycle with dif-
ferent arguments. GetPi() is repeatedly called but it is im-
plemented in such way that uses a static fi eld in the class
MPMath so a value is calculated in fact only if a greater
precision is required than the one, fi xed in the static fi eld.

Then the values of the function are computed in the nec-
essary npmax points. Here again parallel computing is used.
Method f_full() for object of class MFF is used whose main
purpose is to use this method namely with input data from a
list thsh.xc already formed, with abscissae of length npmax.

A separate object is again used for each problem –
FPS, very simple in the case, whose method processing uses
an object of class Integrand, independent for each problem,
containing the method computing the integrand.

After this preliminary preparation the basic algorithm
tanh-sinh is used with an essential modifi cation consisting
in that, that all values being calculated there are taken from
lists which are ready and are not calculated on the spot.
These latter computations are reduced to multiplication and
addition only and they take a very small part of the time,
needed for the through calculation.

Implementation of the Clenshaw-Curtis scheme.
First of all the points in the interval [-1,1] are necessary with

coordinates where n is the corresponding level

and v = 0, 1,..., 2n. An exclusively quick implementation is

the recursive generation [6], p. 417, using only two calls to
the sin function.

To avoid loss of precision a little bit higher working
precision must be used in calculations. If digits correspond
to the number of decimal digits, then digits + log(digits) is
enough. No parallel computations are used here. Recursive
generation is very quick and takes a very small part of the
total calculation time.

For computing the weights a scheme with N*log(N) oper-
ations is used [7], where N = 2n and n is the level. The core idea
is in generating a vector, using the abscissae received above,
for which a quick inverse Fourier transform is used, giving the
weights. Here parallel computations are also not used.

The parallel computing of the integrand looks like in
the same way as the one described in the tanh-sinh scheme.
And here again for the calculations giving the successive
levels no parallel computing is needed.

Comparative Tests

Tests were carried out on a laptop with the following
characteristics: processor Intel (R) Core (TM) i7-3610QM
CPU @ 2.30GHz (4 physical processors, 8 logical proces-
sors (threads) through hyper-thraeding technologies; up to
3.1 GHz at 4 active processors through Turbo Boost). 16
GB RAM, 64-bit operating system Windows 7 Enterprise
(Microsoft Windows NT 6.1.7601 Service Pack 1). In tables
below it is marked as TL (test laptop).

First of all the points in the interval [-1,1] are necessary with

coordinates where

3 201722 information technologies
and control

For a base of the investigation is accepted [8]. There
14 exemplary integrals are given computed with precision to
2000 decimal digits. The results received are compared be-
tween the proposed and developed program tools THSHPar,
a scheme with parallel computing for tanh-sinh quadratures
and CCPar, a scheme with parallel computations for Clen-

shaw-Curtis quadrature to some of the results received in
[8]. As the program CCPar uses a Clenshaw-Curtis quadra-
ture scheme data for it are shown only where it is effective-
ly applicable. A necessary condition is that the integrand
and its derivatives are continuous, with finite values for the
whole interval.

In the last row a correction is added concerning the
maximum possible acceleration related to the hardware used
in [8], having in mind the maximum achieved clock fre-
quency with Turbo Boost and the maximum percentage of
improvement of about 30% provided by the hyper-threading
technology in TL. Here only evident factors are considered.
The speed of the main RAM memory and the processor cache
may influence, but we have no data to compare to [8]. At such
data not including the initialization time in both implementa-
tions – the one from [8] and the presented here, a rough ac-

count (492,12*2 = 982,24 ~ 988.00) shows that results of the
present research by parallelization to 4 processors of TL are
equivalent to 8 processors of the basic scheme in [8]. Without
the correction the result is equal to 16 processors from [8].

For example 14 at 13 levels (table 1) wanted 2000 dig-
its are not reached but up to 1971, both in [8] and THSH-
Par+TL. It is stated in [8] that these 2000 digits are reachable
with 14 levels showing no data. This is really true. THSH-
Par+TL reach this precision with 14 levels in 620.90 calcu-
lations plus 768.55 seconds initialization for 14 levels.

Table 1. Comparative results for THSHPar and the set of examples in [8]

Number of processors
Example Level required 4, [8] 16, [8] 1024, [8] 4, THSHPar+TL

Initialization for level 13 1085.34 271.87 5.02 382.31
1 10 101.63 25.25 0.53 6.11
2 10 294.32 74.04 1.54 129.03
3 10 317.01 79.69 1.83 44.75
4 10 328.73 82.13 1.63 130.31
5 9 51.62 12.90 0.30 4.69
6 10 5.62 1.42 0.05 0.43
7 10 11.46 2.87 0.10 0.65
8 9 50.98 12.85 0.27 4.70
9 10 333.24 83.60 1.84 17.54

10 10 245.45 61.39 1.44 11.84
11 11 5.17 1.30 0.04 1.67
12 12 161.99 40.71 0.80 112.47
13 13 216.50 54.13 0.97 214.40
14 13 1826.02 457.02 7.87 309.41

Total, no initialization 3949.74 989.6 988.00
Correction for
hardware in [8]

1/[(3.1/2)* 1.3] 1960.17 492.12 988.00

Table 2. Comparative results for CCPar and a part of the examples in [8]

Number of processors
Example Level

required
in [8]

Level
required
in CCPar

4, [8] 16, [8] 64, [8] 256, [8] 1024,
[8]

4, CCPar
+TL

Initialization for level
13)/8, i.e. for level 10 135.67 33.98 8.61 2.22 0.63

0
Total time

given below
1 10 12 101.63 25.55 6.45 1.65 0.53 1.84
2 10 12 294.32 74.04 18.83 4.99 1.54 10.95
3 10 10 317.01 79.69 20.42 5.24 1.83 1.23
4 10 12 328.73 82.13 20.84 5.52 1.63 10.99

Total, no initialization 1041.69 261.41 66.54 17.40 5.53 25.01
Total with init. each

time, i.e. + (row #3)*4 1584.37 397.33 100.98 26.28 8.05 25.01

Total with hardware
correction 786.29 197.19 50.11 13.04 4.00 25.01

3 2017 23information technologies
and control

Where the parallel Clenshaw-Curtis quadrature is ap-
plicable (table 2) CCPar + TL with 4 processors is equiva-
lent to about 128 processors of the system used in [8]. This is
with the hardware correction as above. Otherwise this equals
to about 256 processors. Here however another scheme is
applied and such a comparison is somewhat speculative.

There is a diff erence which is to be noted in the deno-
tation of the levels in the two types of schemes. In the tanh-
sinh scheme level k means 20*2k, and in the Clenshaw-Cur-
tis scheme level k means 2k. The computational method used
here for weight calculation including fast inverse Fourier
transform requires the number of points to be a power of
two.

Discussion

Solving of a particular problem, as above mentioned,
depends on many factors. At comparison some of them are
unknown. Even the way of implementation of the elementa-
ry functions participating in the expression for the integrand
is very important. As an example may be given the evolution
of the program system considered here. It was mentioned in
[2] about the program tool NQTS that the example given

for integral whose analyti-

cal valuation hampers the wide spread specialized environ-
ments for mathematical calculations, after "long computa-
tions" gives the result with precision 1000 decimal digits.
These "long computations" at that moment, about two and a
half years before THSHPar and CCPar were developed, took
more than 4 hours and a half. THSHPar solves this problem
in 49.51 sec. (11 levels required, i.e. N = 20*211 = 40960).
From them – 9.53 sec for initialization of abscissae and
weights. Computation of the integrand in the necessary np-
max=8177 points – 39.90 sec. The diff erence is even great-
er for the achieved result with CCPar for the same prob-
lem – 3.87 sec total, 11 levels required, i.e. N = 211 = 2048
points). The great diff erence is due to improvements of all
factors taking part as multipliers in the result for time. For
THSHPar no interpreter is used. Increased precision is used
in the scheme when this is necessary and the number of the
necessary points for computing the integrand is decreased
– the condition for interruption in the basic scheme of the
algorithm forming parameter npmax. Parallel computing is
used. There are improvements in the implementation of the
function atan, asin is calculated through it, and in the trig-
onometric functions. The library XMPIR itself implements
a newer version of MPIR. Besides, what is even more im-
portant, it is optimized for the concrete processor. All this,
except the improvement of the scheme for npmax calcula-
tion, is valid for CCPar also. Something more, this scheme
is more appropriate for the particular example. This does not
belittle the qualities of the tanh-sinh scheme. It is applicable
where the Clenshaw-Curtis scheme is not. Where there are
singularities at the end of the interval, the tanh-sinh trans-
form "regularizes them sending them to infi nity". Something

the Clenshaw-Curtis scheme cannot do in its classic form.
Going back to the basic list of examples it can be noted how-
ever, that CCpar can solve example 13 and 14 too. Using the

transform CCPar

solves these examples for 60.62 and 652.43 sec respective-
ly. 16 and 19 levels respectively are necessary. From formal
point of view, the problem is of course in the fact that the in-
terval for the examples is infi nite and although the integrand
and the derivatives behave well in it, the valuation of the
error, including as a multiplier the interval length becomes
undefi ned. Of course, transforming to fi nite interval can't re-
solve this problem, but simply move it elsewhere. For exam-
ple 14 this is almost evident. At the transform the integrand’s
derivatives are not of bounded variation. Integrals of such
type require a special approach for their eff ective solving.

Conclusion

An eff ective implementation of very high precision
computations of defi nite integrals in a wide spread envi-
ronment is described. Speedup achieved is due to various
factors, including: 1) Appropriate choice of quadrature
schemes, allowing eff ective applying of parallel computa-
tions; 2) Optimization of the basic program instruments for
high precision computations, adapting them to the specifi c
hardware, and 3) Eff ective implementation of basic math-
ematical functions. Program tools are developed for com-
puting defi nite integrals with high precision, THSHPar and
CCPar. Tests are carried out for this implementation demon-
strating the possibility for eff ective computations with very
high precision with specifi c tools of the environment being
used, including the multi-core processors massively built in
in the modern desk top and lap top computers.

References
1. Dzhambov, V. http://www.iict.bas.bg/konkursi/2017/VDjam-
bov/disertacia.pdf.
2. Dzhambov, V. High Precision Computing of Defi nite Integrals
with .NET Framework C# and X-MPIR. – Cybernetics and Infor-
mation Technologies, 14, 2014, No. 1, 172-182.
3. Reid, H., Clenshaw-Curtis Quadrature. Online, http://homerreid.
dyndns.org/teaching/18.330/Notes/ClenshawCurtis.pdf.
4. Trefethen, L. N. Six Myths of Polynomial Interpolation and
Quadrature. Online, https://people.maths.ox.ac.uk/trefethen/
mythspaper.pdf.
5. Trefethen, L. N. Is Gauss Quadrature Better than Clenshaw–Cur-
tis? – SIAM Review, 50, February 2008, No. 1, 67-87.
6. Arndt, J. Matters Computational. Springer, 2011.
7. Waldvogel, J. Fast Construction of the Fejér and Clenshaw–Cur-
tis Quadrature Rules. – BIT Numerical Mathematics, 46, March
2006, No. 1, 195-202.
8. Bailey, D., J. Borwen. Highly Paralell, Highly-Precision Numer-
ical Integration. 2008, http://crd-legacy.lbl.gov/~dhbailey/dhbpa-
pers/quadparallel.pdf.
9. MPIR site, http://mpir.org/.
10. XMPIR Web Location. http://www.alglib.net/x/xmpir/xm-
pir-0.2.zip.

integral whose

ever, that CCpar can solve example 13 and 14 too. Using the

transform CCPar

3 201724 information technologies
and control

Manuscript received on 23.06.2017

Velichko Dzhambov was born in 1960
in Yambol, Bulgaria. M.S. degree in
1985 in physics from Sofia University
"St. Kliment Ohridski". Researcher in
Institute of Engineering Cybernetics
and Robotics – BAS since 1988 and
its later heirs till the present Institute
of Information and Communication
Technologies. Ph.D. in informatics and
computer sciences since 2017. Interests
– high precision computation, numeri-
cal analysis, nonlinear optimization.

Contacts:
Institute of Information and Communication Technologies

Bulgarian Academy of Sciences
Acad. G. Bonchev St., bl. 2, 1113 Sofia

e-mail: vili_jambov@abv.bg

