
3 201716 information technologies
and control

An Algorithm for Generating a Dispersed
Population of Feasible Schedules
for Flexible Job Shop Problems

L. Kirilov, V. Guliashki

Key Words: Flexible job shop problems (FJSP); scheduling; heu-
ristics; optimization.

Abstract. The flexible job shop problems (FJSP) are an important
class of scheduling problems and they have a significant practical
value. Unfortunately it is not easy to solve job shop problems and
in particular FJSPs because they are NP-hard problems. In this pa-
per we propose a method for generating a set of feasible schedules
for a given FJSP.

Introduction

The job shop scheduling problem is well-known from
operations research and computer science and is of high prac-
tical value with appli¬cations in many real-life situations
[1,10]. While first approaches in this area consider optimal-
ity of schedules for a single objective function, multi-objec-
tive formulations of the problem have become gradually of
increasing importance [4]. A theory of multi-criteria sched-
uling is presented in [11]. A survey of methods for job shop
scheduling using multi-criteria decision making is presented
in [9]. In this paper the multi-criteria flexible job shop sched-
uling problem is considered as an extension of the popular
multi-criteria job shop scheduling problem. During the last
decades many researchers have devoted considerable efforts
to developing evolutionary multi-criteria algorithms.

The problem of scheduling arises when planning and
controlling the decision-making process of manufacturing
and service industries. It can be schematized as follows:
There is a number of N jobs to be executed. Each job con-
sists of a given sequence of operations which needs to be
performed using a number of M machines. All operations
for each job must be performed in the order given by the
sequence. Each operation demands the use of a particular
machine for a given time. Each machine can process only
one operation at a time. The goal is to find a schedule op-
timizing the above problem according to the given objec-
tive function (cost function, make-span, tardiness, maximal
workload etc.). Scheduling consists of assigning each opera-
tion of each job a start time and a completion time on a time
scale of the machine with the preference relations.

The most used in practice is the job shop scheduling
problem. It is a difficult computational problem. Optimal
solutions for job shop scheduling can be found in polynomial
time if the number of jobs is 2, or if the number of machines is
2 and all jobs have 1 or 2 operations, or if the number of ma-

chines is 2 and all operations have duration 1. In all cases the
problem obtained by incrementing the number of machines,
jobs, operations or durations by 1, is NP-hard [5, 7]. We have
no intention to go in details in the theory of computational
complexity. For our purposes is enough to say that NP-hard
means Non-deterministic Polynomial-time hard problems.

Below are presented the basic formulations of the clas-
sical job shop problem (JSP) and of the flexible job shop
problem (FJSP).

Job Shop Problem (JSP)

The JSP is formulated as follows: There is given a set
of n jobs: J1, ..., Jn , which have to be performed on m ma-
chines M1, ... , Mm.

 For each job there is given the operative consequence
of the jobs composing this job. Namely:

Ji = (Oi, 1,... , Oi, j(i)), j(i) is the number of operations
for the corresponding job, i=1,...,n.

It is well-known which operation on which machine
should be executed. Therefore another formulation of this
model is:

Ji = (Mi, 1,…, Mi, j(i)).
The processing times for each possible operation on

each machine are known: pi,k, i=1,...,n; k = 1, ... , j(i).
The optimal schedule according preliminary given cri-

terion (criteria) has to be found. For example one criterion
could be the minimization of make-span (time window) –
Cmax.

This is the most often used and chronologically the
earliest developed model – see for example [5,6].

Flexible Job Shop Problem (FJSP)

This model represents an extension of the above job
shop problem. Here each operation can be executed not
only on one machine, but on a given subset of machines.
This subset is naturally different for each operation. In other
words, it is not a priori known which operation on which
machine should be performed.

This model is closer to real life production situa-
tions and could be applied, when some or all machines are
multi-functional (multitasking) – i.e. they could perform
more than one operation (not at the same time) with cor-
responding different processing times. Among the first re-
searchers suggesting this model are Bruker and Schlie – [2].

Print ISSN: 1312-2622; Online ISSN: 2367-5357
DOI: 10.1515/itc-2017-0029

3 2017 17information technologies
and control

As noted in [3] the FJSP is a problem of high complex-
ity and practical value, and it has been widely investigated
for the last two decades. Researches on its multiobjective
version started about ten years ago, but most studies focused
on searching for the single optimal solution with respect to a
certain aggregated objective. Research works aiming at ob-
taining the set of Pareto optimal solutions appeared during
the recent three years.

There are two variants of FJSP – [8]:
First, when each operation of each job can be executed

on any, no matter which, machine. This case is relevant to
the total / global flexibility (total flexible job shop problem
– T-FJSP).

Second, even not each (but at least one) operation can
be performed on any machine. This case refers to the partial
flexibility (partial flexible job shop problem – P-FJSP).

Sometimes it is necessary to generate a number of fea-
sible schedules. They can be used as a population in evolu-
tionary or genetic algorithms for further calculations.

In this paper we present a method to generate a large
number of feasible schedules for FJSPs.

The Proposed Approach

A specific schedule is defined when for each opera-
tion from each job it is known the machine to be performed
on, the starting time (or ending time). One way of schedule
representation is the Gant' diagram. But for our purposes we
need more effective way of schedule representation in order
to perform different operations with it.

Coding

We will use the two-vector coding as in [14].
A schedule is presented in the forms of vector A and

vector B, see figure 1 and figure 2.
The two strings have equal length and it is just the sum

of all operations for all jobs.
Let we have a number of four jobs to be performed on

a set of five machines – M1, M2, M3, M4, M5;
4 jobs - J1(O1, O2, O3), J2(O1, O2, O3), J3(O1, O2, O3, O4),

J4(O2, O4).
Then in this case the strings' length is 12.
The number in each box of string A denotes on which

machine the corresponding operation to be performed – see
figure 1.

The operations and precedence relations between job's
operations are given in string B – see figure 2. If we take for
example job J1(O1, O2, O3) we see three boxes with value
"1". The first one found from left to right means O1,1, the
second one found from left to right means O1,2 and etc.

Figure 1. Representation of A-string

Figure 2. Representation of B-string

Figure 3. Representation of C-string

One schedule is fully described with the operations,
the corresponding machines to be performed and the starting
times (or ending times). Note that it is possible that a sched-
ule to be described by the A- and B-strings. But for our pur-
poses we need an additional string. Therefore we introduce
array C with the same length J = J1 + ... + Jn and with the
same construction as an array A – see figure 3. But each cell
of an array C contains the starting time for the corresponding
machine from the same cell in the array A.

In this way we code each possible schedule with the
help of three arrays: A, B and C. Actually the arrays A and C
are sufficient to form the Gant' diagram.

An Algorithmic Scheme

The scheme consists of two basic steps – generating
a set of B-strings and generating a corresponding set of
A-string and C-string so the triples A-B-C to form feasible
schedules of the considered FJSP problem.

Algorithm:
1) Input – parameters of JSP
N – the number of jobs;
Ji – length of the job i, i = 1, ... ,n;
M – number of machines.
Table P(J,m) with processor times for each operation

and machine.
Here J = J1 + ... + Jn. Note that some cells could be

empty if the operation cannot be performed on some ma-
chines and vice versa. This could be the case for flexible
job shop problems or extended flexible job shop problems
[15,12].

L ‒ integer, indicating the number of schedules to be
generated.

2) Step – generating a set of B-strings
Randomly generate a set of L "B-strin”s, such that for

each string:
"1" appears exactly J1 times;
"2" appears exactly J2 times;
..
"n" appears exactly Jn times.
Let us denote the set of "B-string"s as {B} = {B1, ...,

BL}
3) Step – generating a set of A-strings and C-strings
For j = 1, L
do
 For i = 1, n
 do
 FLAG(i) = 0 " flags "
 end

3 201718 information technologies
and control

 For i = 1, m
 TM(i) = 0 "initialize summary

machine times"
 end i
 For i = 1, J
 do
 IF (B(j,i) is equal to one of the {1,2, ... , n}
 FLAG(i) = FLAG(i)+1
Assign the operation O(B(j,i), FLAG(i)) to the avail-

able machine Ms with total processor time TM(s) = min
TM(g), g = 1,..., m. If more than one machine exists, then
select the machine Ms according to the second objective P
(f,s) = min {P(f, g), g = 1,..., m}, where f = J1 + ... + JB(j,i)-1
+ B(j,i) + FLAG(i) (see the row J1 + ... + JB(j,i)-1 + B(j,i) +
FLAG(i) in the table P with processor times).

Again if more than one machine exists then select the
machine with smaller index.

Note that in the array TM(s) we take into account both
the real processor time and idle time with accumulating.

Note, if TM(s) + P(f,s) = TM(s(O(B(j,i), FLAG(i-1))))
then work with s = s(O(B(j,i), FLAG(i-1))). In other words,
we select the same machine on which the previous operation
was performed.

Define cell A(f) = s
"Define starting time for operation O(B(j,i), FLAG(i)"
Define cell C(f) = max(TM(s), TM(s(O(B(j,i),

FLAG(i-1))),
"Here TM(s(O(B(j,i), FLAG(i-1)) is the ending time

for the operation O(B(j,i), FLAG(i-1)) on the machine
M(s(O(B(j,i), FLAG(i-1)) with exception for the "first" job's
operation ‒ the case "i = 1"

"Update"
TM (s) = max(TM(s), TM(s(O(B(j,i), FLAG(i-1))) +

P (f,s)
end i

end j
4) Result
The result is a set of a number of L array triples A-B-C

containing the precedence relations between operations, the
machines to operate and the starting times for each opera-
tion. In this way the schedules are fully described.

Discussion

The proposed algorithm is designed for flexible job
shop problems.

It can be applied also for the model of extended flexi-
ble job shop problems without any essential difficulties – see
[12,13]. It can also be applied for the basic job shop prob-
lem. Remember that for job shop problems it is known in
advance which operation on which machine has to be per-
formed. Therefore the construction of an array A is even eas-
ier in this case.

The basic idea for selecting the appropriate machine
for operation to be performed is to choose the most "unem-
ployed" machine according to the objective "total machine
processing time". In the above algorithmic scheme it is de-
fined as M(j), j= 1, ,... ,m.

The algorithm works as follows. First, a family of ar-
rays B is constructed. After that the arrays A and C are de-
fined taking into account the precedence relations between
operations in each job.

The generated schedules are randomly generated in
the space of feasible solutions (schedules). Their properties
additionally depend by the properties of the probability dis-
tribution.

The above algorithm could be applied in methods
where a number of schedules have to be processed simulta-
neously. For example, these can be evolutionary or genetic
or parallel methods for solving job shop problems.

An Illustrative Example

Consider the following FJSSP with three machines
and three jobs and total of nine operations.

O(i,j) M1 M2 M3
J1 O(1,1) 3 5 5

O(1,2) 4 - 3
J2 O(2,1) 6 5 -

O(2,2) - 4 5
O(2,3) 3 4 5

J3 O(3,1) 6 5 3
O(3,2) 4 5 6
O(3,3) 4 4 4
O(3,4) 2 3 4

We will define two schedules according the above
scheme – L = 2.

Let the result from step 2 is {B} = {B1, B2} as follows:
B1 = (3, 2, 1, 1, 2, 3, 3, 2, 3)
B2 = (2, 3, 1, 3, 2, 1, 3, 2, 3)
Then the result from step3 is:
A1 = (1, 3, 2, 1, 1, 3, 2, 3, 2)
C1 = (0, 3, 0, 4, 7, 0, 4, 9, 13)
A2 = (1, 3, 2, 2, 3, 3, 1, 1, 1)
C2 = (0, 3, 0, 5, 7, 0, 3, 7, 11)

Conclusion

 Populations of solutions are used in all evolutionary
and genetic algorithms for solving different optimization
problems. In particular, scheduling problems are solved
very successfully by means of different heuristic popula-
tion-based strategies because they are NP-hard problems.

 The proposed method generates a set of feasible
schedules for FJSP with an arbitrary size. It is a two stage
heuristic. The generated solutions could be used for further
calculations in different optimization methods to find the op-
timal solution of FJSP.

Acknowledgement

This study is partially supported by the project No.
BG161PO003-1.1.06-0083 to the EU operative program

3 2017 19information technologies
and control

„Development of Bulgarian economy competitiveness” en-
titled: “Scientific research for the purposes of development
of software tool for generating efficient schedules by an in-
novative method for multiple objective optimization in dis-
crete manufacturing within the scope of small and medium
enterprises”.

References
1. Blazewicz J., K. H. Ecker, E. Pesch, G. Schmidt, and J. Weglarz.
Scheduling Computer and Manufacturing Processes. Berlin, Hei-
delberg, New York, Springer Verlag, 2. Edition, 2001.
2. Bruker, P., R. Schlie. Job Shop with Multi-purpose Machine. –
Computing, 45, 1990, 369-375.
3. Chiang, Tsung-Che, Lin, Hsiao-Jou. A Simple and Effective
Evolutionary Algorithm for Multiobjective Flexible Job Shop
Scheduling. – Int. J. Production Economics, 141, 2013, 87-98.
4. Daniels, R. Incorporating Preference Information into Multi-Ob-
jective Scheduling. – European Journal of Operational Research,
77, 1994, 272-286.
5. Garey, M., D. Johnson, and R. Sethi. The Complexity of Flow-
shop and Jobshop Scheduling. – Mathematics of Operations Re-
search, 1, 1976, 2, 117–129.
6. Lawler, E., J. Lenstra, A. Rinnooy Kan, and D. Shmoys. (1993)
Sequencing and Scheduling: Algorithms and Complexity. A.H.G.
Rinnooy Kan S.C Graves and P.H. Zipkin, Editors. Logistics of
Production and Inventory, Elsevier, 4, 1993, 9, 445–522.
7. Lenstra, J. K., A. R. Kan, P. Brucker. Complexity of Machine
Scheduling Problems. – Annals of Discrete Mathematics, 1, 1977,
343-362.
8. Motaghedi-Iarijani, A., K. Sabri-Iaghaie, M. Heydari. Solving
Job Shop Scheduling with Multi Objective Approach. – Int. J. of
Industrial Engineering and Production Research, 21, 2010, No 4,
197-209.
9. Parveen, S. and H. Ullah. Review on Job-Shop and Flow-Shop
Scheduling Using Multi Criteria Decision Making. – Journal of
Mechanical Engineering, ME 41, December 2010, No. 2, Transac-
tion of the Mech. Eng. Div., The Institution of Engineers, Bangla-
desh, 130-146.
10. Pinedo, M. Planning and Scheduling in Manufacturing and Ser-
vices. Berlin, Heidelberg, New York, Springer Verlag, 2005.
11. T'kindt, V., J.-C. Billaut. Multicriteria Scheduling: Theory,
Models and Algorithms. Berlin, Heidelberg, New York, Springer
Verlag, 2002, 2006.
12. Kirilov, L., V. Guliashki. (2014) An Extension of Flexible Job
Shop Problem (FJSP) and Method for Solving. Proceedings of
CompSysTech '14 Proceedings of the 15th International Confer-
ence on Computer Systems and Technologies, ACM New York,
NY, USA ©2014, ACM International Conference Proceeding Se-
ries, 883, 2014, 210-217.
13. Kirilov, L., V. Guliashki, K. Genova. Shifting Bottleneck (SB)
Approach for Solving Job Shop Scheduling Problems (JSSP’s).
Proceedings of Int. Conference Robotics, Automation and Mecha-
tronics’14 RAM 2014, 5-7 November 2014, Sofia, 22-25.
14. Zhang, G., X. Shao, P. Li, L. Gao. An Effective Hybrid Particle
Swarm Optimization Algorithm for Multi-objective Flexible Job
Shop Scheduling Problem. – Computers & Industrial Engineering,
56, 2008, 4, 1309-1318.
15. Birgin, E., P. Feofiloff, C. Fernandes, E. de Melo, M. Oshiro
and D. Ronconi. A MILP Model for an Extended Version of the
Flexible Job Shop Problem. – Optimization Letters, 8, 2013, No.
4, 1417-1431.

Manuscript received on 05.12.2016

Leoneed Kirilov works at the Institute of
Information and Communication Tech-
nologies – Bulgarian Academy of Sci-
ences, Bulgaria. His research interests
are Multiple Criteria Decision Making,
Decision Support Systems, Modelling,
Optimization Methods and Applica-
tions (Multiple Objective Optimization,
Decision Analysis, Decision Making,
Hydrologic Modelling, Schedule Opti-
mization, Monte Carlo Simulation, Ma-
terials Science, Nanotechnology). Up to

now his research activity is published in about 100 papers and two
monographs (almost all in English). He is a member of Interna-
tional Society on MCDM, Union of Scientists in Bulgaria.

Contacts:
Institute of Information and Communication Technologies (IICT)

Bulgarian Academy of Sciences, Sofia, Bulgaria
www.iict.bas.bg, lkirilov@iinf.bas.bg, l_kirilov_8@abv.bg

Vassil Guliashki is currently an Asso-
ciate Professor at the Institute of Infor-
mation and Communication Technolo-
gies – Bulgarian Academy of Sciences
(IICT – BAS), Department “Informa-
tion Processes and Decision Support
Systems”. He earned his Master of
Science (Automation and System-Tech-
nique) at Technical University – Sofia,
Bulgaria, in 1988 and his PhD in Tech-
nical Cybernetics from the Institute of
Information Technologies – BAS (IIT

– BAS since 1992) in 1994, with scientific advisors Prof. Vassil
Vassilev and Prof. Vassil Sgurev. In his thesis work entitled “Al-
gorithms for Solving Convex Nonlinear Integer Programming
Problems” he created a Tabu Search heuristic algorithm for single
objective problems and an interactive reference direction algo-
rithm for multiple objective problems. After completion of his PhD,
Vassil Guliashki accepted a position as Research Associate II and
I degree resp. at the IIT – BAS in the period 1995–1997. In 2009,
V. Guliashki accepted an Associate Professor position at the IIT
– BAS. The main research areas of Vassil Guliashki are Discrete
Optimization, Meta heuristic strategies, Evolutionary algorithms,
Multiple Objective Programming, Decision Support Systems, Lin-
ear Discriminant Analysis, Combinatorial optimization. He partic-
ipates in solving many practical problems by means of single and
MCDM approaches. Vassil Guliashki has more than 100 refereed
publications, one monograph book. He takes participation in more
than 30 research and applied projects up to now.

Contacts:
Institute of Information and Communication Technologies

Bulgarian Academy of Sciences, Sofia, Bulgaria
e-mails: vggul@yahoo.com, v_guliashki@bas.bg

