
3 201716 information technologies
and control

An Algorithm for Generating a Dispersed 
Population of Feasible Schedules 
for Flexible Job Shop Problems

L. Kirilov, V. Guliashki

Key Words: Flexible job shop problems (FJSP); scheduling; heu-
ristics; optimization.

Abstract. The flexible job shop problems (FJSP) are an important 
class of scheduling problems and they have a significant practical 
value. Unfortunately it is not easy to solve job shop problems and 
in particular FJSPs because they are NP-hard problems. In this pa-
per we propose a method for generating a set of feasible schedules 
for a given FJSP. 

Introduction

The job shop scheduling problem is well-known from 
operations research and computer science and is of high prac-
tical value with appli¬cations in many real-life situations 
[1,10]. While first approaches in this area consider optimal-
ity of schedules for a single objective function, multi-objec-
tive formulations of the problem have become gradually of 
increasing importance [4]. A theory of multi-criteria sched-
uling is presented in [11]. A survey of methods for job shop 
scheduling using multi-criteria decision making is presented 
in [9]. In this paper the multi-criteria flexible job shop sched-
uling problem is considered as an extension of the popular 
multi-criteria job shop scheduling problem. During the last 
decades many researchers have devoted considerable efforts 
to developing evolutionary multi-criteria algorithms.

The problem of scheduling arises when planning and 
controlling the decision-making process of manufacturing 
and service industries. It can be schematized as follows: 
There is a number of N jobs to be executed. Each job con-
sists of a given sequence of operations which needs to be 
performed using a number of M machines. All operations 
for each job must be performed in the order given by the 
sequence. Each operation demands the use of a particular 
machine for a given time. Each machine can process only 
one operation at a time. The goal is to find a schedule op-
timizing the above problem according to the given objec-
tive function (cost function, make-span, tardiness, maximal 
workload etc.). Scheduling consists of assigning each opera-
tion of each job a start time and a completion time on a time 
scale of the machine with the preference relations. 

The most used in practice is the job shop scheduling 
problem. It is a difficult computational problem. Optimal 
solutions for job shop scheduling can be found in polynomial 
time if the number of jobs is 2, or if the number of machines is 
2 and all jobs have 1 or 2 operations, or if the number of ma-

chines is 2 and all operations have duration 1. In all cases the 
problem obtained by incrementing the number of machines, 
jobs, operations or durations by 1, is NP-hard [5, 7]. We have 
no intention to go in details in the theory of computational 
complexity. For our purposes is enough to say that NP-hard 
means Non-deterministic Polynomial-time hard problems.

Below are presented the basic formulations of the clas-
sical job shop problem (JSP) and of the flexible job shop 
problem (FJSP).

Job Shop Problem (JSP) 

The JSP is formulated as follows: There is given a set 
of n jobs: J1, ..., Jn , which have to be performed on m ma-
chines M1, ... , Mm. 

 For each job there is given the operative consequence 
of the jobs composing this job. Namely:

Ji = (Oi, 1,... , Oi, j(i) ), j(i) is the number of operations 
for the corresponding job, i=1,...,n.

It is well-known which operation on which machine 
should be executed. Therefore another formulation of this 
model is: 

Ji = (Mi, 1,…, Mi, j(i) ).
The processing times for each possible operation on 

each machine are known: pi,k, i=1,...,n; k = 1, ... , j(i).
The optimal schedule according preliminary given cri-

terion (criteria) has to be found. For example one criterion 
could be the minimization of make-span (time window) – 
Cmax. 

This is the most often used and chronologically the 
earliest developed model – see for example [5,6]. 

Flexible Job Shop Problem (FJSP)

This model represents an extension of the above job 
shop problem. Here each operation can be executed not 
only on one machine, but on a given subset of machines. 
This subset is naturally different for each operation. In other 
words, it is not a priori known which operation on which 
machine should be performed. 

This model is closer to real life production situa-
tions and could be applied, when some or all machines are 
multi-functional (multitasking) – i.e. they could perform 
more than one operation (not at the same time) with cor-
responding different processing times. Among the first re-
searchers suggesting this model are Bruker and Schlie – [2]. 
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As noted in [3] the FJSP is a problem of high complex-
ity and practical value, and it has been widely investigated 
for the last two decades. Researches on its multiobjective 
version started about ten years ago, but most studies focused 
on searching for the single optimal solution with respect to a 
certain aggregated objective. Research works aiming at ob-
taining the set of Pareto optimal solutions appeared during 
the recent three years. 

There are two variants of FJSP – [8]:
First, when each operation of each job can be executed 

on any, no matter which, machine. This case is relevant to 
the total / global flexibility (total flexible job shop problem 
– T-FJSP).

Second, even not each (but at least one) operation can 
be performed on any machine. This case refers to the partial 
flexibility (partial flexible job shop problem – P-FJSP).

Sometimes it is necessary to generate a number of fea-
sible schedules. They can be used as a population in evolu-
tionary or genetic algorithms for further calculations.

In this paper we present a method to generate a large 
number of feasible schedules for FJSPs.

The Proposed Approach

A specific schedule is defined when for each opera-
tion from each job it is known the machine to be performed 
on, the starting time (or ending time). One way of schedule 
representation is the Gant' diagram. But for our purposes we 
need more effective way of schedule representation in order 
to perform different operations with it.

Coding

We will use the two-vector coding as in [14].
A schedule is presented in the forms of vector A and 

vector B, see figure 1 and figure 2.
The two strings have equal length and it is just the sum 

of all operations for all jobs.
Let we have a number of four jobs to be performed on 

a set of five machines – M1, M2, M3, M4, M5;
4 jobs - J1(O1, O2, O3), J2(O1, O2, O3), J3(O1, O2, O3, O4), 

J4(O2, O4).
Then in this case the strings' length is 12. 
The number in each box of string A denotes on which 

machine the corresponding operation to be performed – see 
figure 1.

The operations and precedence relations between job's 
operations are given in string B – see figure 2. If we take for 
example job J1(O1, O2, O3) we see three boxes with value 
"1". The first one found from left to right means O1,1, the 
second one found from left to right means O1,2 and etc.

Figure 1. Representation of A-string

 
Figure 2. Representation of B-string

 
Figure 3. Representation of C-string

One schedule is fully described with the operations, 
the corresponding machines to be performed and the starting 
times (or ending times). Note that it is possible that a sched-
ule to be described by the A- and B-strings. But for our pur-
poses we need an additional string. Therefore we introduce 
array C with the same length J = J1 + ... + Jn and with the 
same construction as an array A – see figure 3. But each cell 
of an array C contains the starting time for the corresponding 
machine from the same cell in the array A.

In this way we code each possible schedule with the 
help of three arrays: A, B and C. Actually the arrays A and C 
are sufficient to form the Gant' diagram.

An Algorithmic Scheme

The scheme consists of two basic steps – generating 
a set of B-strings and generating a corresponding set of 
A-string and C-string so the triples A-B-C to form feasible 
schedules of the considered FJSP problem.

Algorithm:
1) Input – parameters of JSP
N – the number of jobs;
Ji – length of the job i, i = 1, ... ,n;
M – number of machines.
Table P(J,m) with processor times for each operation 

and machine. 
Here J = J1 + ... + Jn. Note that some cells could be 

empty if the operation cannot be performed on some ma-
chines and vice versa. This could be the case for flexible 
job shop problems or extended flexible job shop problems 
[15,12].

L ‒ integer, indicating the number of schedules to be 
generated.

2) Step – generating a set of B-strings
Randomly generate a set of L "B-strin”s, such that for 

each string:
"1" appears exactly J1 times;
"2" appears exactly J2 times;
..................................................
"n" appears exactly Jn times.
Let us denote the set of "B-string"s as {B} = {B1, ..., 

BL}
3) Step – generating a set of A-strings and C-strings
For j = 1, L
do
 For i = 1, n 
 do
  FLAG(i) = 0  " flags "
 end
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 For i = 1, m 
  TM(i) = 0  "initialize summary 

machine times" 
 end i
 For i = 1, J 
  do
  IF (B(j,i) is equal to one of the {1,2, ... , n} 
   FLAG(i) = FLAG(i)+1
Assign the operation O(B(j,i), FLAG(i)) to the avail-

able machine Ms with total processor time TM(s) = min 
TM(g), g = 1,..., m. If more than one machine exists, then 
select the machine Ms according to the second objective P 
(f,s) = min {P(f, g), g = 1,..., m}, where f = J1 + ... + JB(j,i)-1 
+ B(j,i) + FLAG(i) (see the row J1 + ... + JB(j,i)-1 + B(j,i) + 
FLAG(i) in the table P with processor times). 

Again if more than one machine exists then select the 
machine with smaller index. 

Note that in the array TM(s) we take into account both 
the real processor time and idle time with accumulating.

Note, if TM(s) + P(f,s) = TM(s(O(B(j,i), FLAG(i-1)))) 
then work with s = s(O(B(j,i), FLAG(i-1))). In other words, 
we select the same machine on which the previous operation 
was performed.

Define cell A(f) = s 
"Define starting time for operation O(B(j,i), FLAG(i)"
Define cell C(f) = max(TM(s), TM(s(O(B(j,i), 

FLAG(i-1))),
"Here TM(s(O(B(j,i), FLAG(i-1)) is the ending time 

for the operation O(B(j,i), FLAG(i-1)) on the machine 
M(s(O(B(j,i), FLAG(i-1)) with exception for the "first" job's 
operation ‒ the case "i = 1"

"Update" 
TM (s) = max(TM(s), TM(s(O(B(j,i), FLAG(i-1))) + 

P (f,s)
end i

end j
4) Result 
The result is a set of a number of L array triples A-B-C 

containing the precedence relations between operations, the 
machines to operate and the starting times for each opera-
tion. In this way the schedules are fully described.

Discussion

The proposed algorithm is designed for flexible job 
shop problems.

It can be applied also for the model of extended flexi-
ble job shop problems without any essential difficulties – see 
[12,13]. It can also be applied for the basic job shop prob-
lem. Remember that for job shop problems it is known in 
advance which operation on which machine has to be per-
formed. Therefore the construction of an array A is even eas-
ier in this case.

The basic idea for selecting the appropriate machine 
for operation to be performed is to choose the most "unem-
ployed" machine according to the objective "total machine 
processing time". In the above algorithmic scheme it is de-
fined as M(j), j= 1, ,... ,m. 

The algorithm works as follows. First, a family of ar-
rays B is constructed. After that the arrays A and C are de-
fined taking into account the precedence relations between 
operations in each job.

The generated schedules are randomly generated in 
the space of feasible solutions (schedules). Their properties 
additionally depend by the properties of the probability dis-
tribution. 

The above algorithm could be applied in methods 
where a number of schedules have to be processed simulta-
neously. For example, these can be evolutionary or genetic 
or parallel methods for solving job shop problems. 

An Illustrative Example

Consider the following FJSSP with three machines 
and three jobs and total of nine operations.

O(i,j) M1 M2 M3
J1 O(1,1) 3 5 5

O(1,2) 4 - 3
J2 O(2,1) 6 5 -

O(2,2) - 4 5
O(2,3) 3 4 5

J3 O(3,1) 6 5 3
O(3,2) 4 5 6
O(3,3) 4 4 4
O(3,4) 2 3 4

We will define two schedules according the above 
scheme – L = 2.

Let the result from step 2 is {B} = {B1, B2} as follows:
B1 = (3, 2, 1, 1, 2, 3, 3, 2, 3)
B2 = (2, 3, 1, 3, 2, 1, 3, 2, 3)
Then the result from step3 is:
A1 = (1, 3, 2, 1, 1, 3, 2, 3, 2)
C1 = (0, 3, 0, 4, 7, 0, 4, 9, 13)
A2 = (1, 3, 2, 2, 3, 3, 1, 1, 1)
C2 = (0, 3, 0, 5, 7, 0, 3, 7, 11)

Conclusion

 Populations of solutions are used in all evolutionary 
and genetic algorithms for solving different optimization 
problems. In particular, scheduling problems are solved 
very successfully by means of different heuristic popula-
tion-based strategies because they are NP-hard problems. 

 The proposed method generates a set of feasible 
schedules for FJSP with an arbitrary size. It is a two stage 
heuristic. The generated solutions could be used for further 
calculations in different optimization methods to find the op-
timal solution of FJSP.
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