
2 201714 information technologies
and control

Wireless Kinect-NAO Framework Based
on Takagi-Sugeno Fuzzy Inference System

A. Lekova, A. Krastev, I. Chavdarov

Key Words: Teleoperation; telerobotics, Takagi–Sugeno fuzzy sys-
tem; view invariance; Microsoft Kinect V2; NAO robot.

Abstract. In the context of learning new skills by imitation for
children with special educational needs, we propose Wireless Ki-
nect-NAO Framework (WKNF) for robot teleoperation in real time
based on Takagi-Sugeno (T-S) Fuzzy Inference System. The new
solutions here are related to complex whole-body motion retarget-
ing, standing body stabilization, view invariance and smoothness
of robot motions. The raw depth Kinect data are fuzzified and
processed by median filter. The joint angles estimation for motion
mapping of Human to NAO movements is based on fuzzy logic and
featured angles rather than direct angles are calculated by Inverse
Kinematics due to differences in the human and robot kinematics.
During the joint angles calculation nonlinearities are observed as
a result of ambiguity of Kinect 3D joint coordinates in different
offsets. NAO kinematic limitations and nonlinearities in workspace
are decomposed and linearly approximated by T-S fuzzy rules of
zero and first order that have local support in 2D projections. To
prevent the robot to fall down, the center of mass is considered in
order NAO to stay within a support and safe polygon. The feasibili-
ty of the proposed framework has been proven by real experiments.

1. Introduction

Imitation involves a child’s ability to copy others and
helps children to learn new things and movements. Unfor-
tunately, children with special educational needs often have
difficulty with imitation. They lack the ability to share a focus
on humans, however are attracted to robots and computerized
technologies. Therefore, we seek for joyful play environment
exploiting assistive technologies to enhance children’s abil-
ity to imitate. In the context of the project [1], a Microsoft
Kinect sensor [2] is used for motion-sensing and mediating
the process of doing things by teleoperation to replicate the
human movements on the robot. Nowadays, teleoperation (or
also motion retargeting) is achieved by sensors on the human
or by external observations over time. Since the marker based
motion capturing systems are expensive, require careful cali-
bration and are hard to use in daily life, a lot of work has been
done to study imitation by external observations for extracting
3D poses from an image sequence. Tracking the human mo-
tion is an attempt a kinematic model of the robot to be recov-
ered from the video sequences and to be an input for the kine-
matic modules of the robot. The teleoperation process has two
stages: the operator’s calibration stage and motion mapping
to the robot. During the complex whole-body motion retarget-
ing from video observations, considering the positions of the
endeffectors and the center of mass over the support polygon
to avoid falls of the robot are the most important aspects in

direct imitation. Another concerns are that the robot may have
insufficient degrees of freedom to satisfy the desired motion
or circumstances of redundancy where unique solution is not
guaranteed.

1.1. Problem Formulation

In the present study, Kinect V2 sensor is used for te-
leoperation of Aldebaran NAO humanoid robot V 2.1.4 [3].
These two technologies used for imitation in the context of a
play as learning environment are expected to be easily set-up
at day-care centers or schools from people without engineer-
ing skills. So, the calibration of their integration should be
easy. Observing the changes in the human and robot move-
ment we faced a variety types of problems during design
and implementation coming from the following require-
ments: (1) need of Kinect data smoothing and filtering; (2)
need of real-time operation; (3) smooth functions for motion
retargeting without false sudden shifts that cause the robot
to move abruptly; (4) view-invariance and scalability of the
Inverse Kinematics solutions; (5) NAO standing stability.

Motion retargeting should be online and in real-time.
There are two Aldebaran’s Inverse Kinematics (IK) functions
on the robot side to control the arm’s joints and move the
hand point to a given position [3] by passing the coordinates
of a hand end positions using transformation matrices or di-
rect angle mapping to pass parameters to control of arm’s
joints. However, Aldebaran’s IK function works correctly
only after passing the orientation of the hand point from Ki-
nect. Additionally, the noisy Kinect readings cause continu-
ously changing joint angles and results in abrupt movement
of the arms even in steady state. The Kinect joint positions
data are not perfectly precise, meaning that they are scat-
tered around the correct joint positions in each frame and
are accurate within a centimetre range, not millimetre [4].
When the functions using these data are not smooth (e.g. in
calculating forearm size that participate in formulae for an-
gles) the sudden Kinect spikes will cause the robot to move
abruptly while the user is barely changing pose. During the
whole body retargeting, the torso and/or leg joints have to be
controlled in parallel with other joints in order to generate
and stabilize consistent motions.

1.2. Existing Solutions

A variety of approaches how robots to imitate human
motions have been proposed, however most of them consid-
er only upper-body motions, while the legs are neglected.

Print ISSN: 1312-2622; Online ISSN: 2367-5357
DOI: 10.1515/itc-2017-0023

2 2017 15information technologies
and control

We are focused only on reported studies presenting real-time
systems for NAO teleoperation using visual-based motion
observations, mainly obtained from Kinect sensor. The noise
and variations of Kinect readings are taken care by the mar-
gin of error [5] or by filtering the Kinect data [6]. The dou-
ble exponential smoothing filter [4] is the most used filter
for smoothing Kinect data [6]. During calibration a complex
reference coordination between Kinect and robot coordinate
frames requires a lot of code and skills that therapists or ed-
ucators do not have. Often the operator stays at predefined
area in front of the Kinect view [7] or complex transforma-
tion matrices are used for calibration between Kinect and
NAO coordinate systems since different areas of the input
space require different compensations and scale indepen-
dence.

Inverse kinematics is often used for the joint angle
calculation, however, it needs relatively high computational
cost for the optimization calculation and in case of redun-
dancy a unique solution is difficult to be found. An adaptive
neuro-fuzzy inference system (ANFIS) for motion mapping
is proposed in [5], where three methods to imitate human
upper body motion are implemented on a NAO robot and
compared: (1) direct angle mapping method (2) IK using
fuzzy logic and (3) IK using iterative Jacobian. The direct
method requires the coordinates of three joints (shoulder,
elbow and wrist) to determine NAO angles. However, con-
tinuously changing angles for the positions result in jerky
movement. The IK using ANFIS method requires only two
joint coordinates and is found to be more efficient and fast
because the fuzzy system is trained a priory and there are
not many computations involved in mapping the coordi-
nates of the end-effector to the joint angles. However, the
training of the ANFIS can take a long time depending on
the amount of training data. Moreover, the first method is
used to train ANFIS and training phase could not be per-
formed from inexperienced persons. Solving the IK problem
iteratively using the Jacobian pseudo-inverse requires two
joints as well, but is found to be inefficient because a lot of
iterations are required at each step and the response of the
robot is very slow. This method also gets stuck in singulari-
ties. The authors in [8] presents a different type of real-time
inverse kinematics based retargeting system to map human
upper limbs motions (tracking by Kinect sensor) safely and
smoothly to robot’s joints. It considers motion similarity be-
tween end-effector motions and between angular configura-
tions. Additional constraints are proposed and solved in the
projected null space of the Jacobian matrix.

As it can be seen in the above studies, the legs are ne-
glected. However, during the complex whole-body teleoper-
ation motion retargeting has to be feasible and stable. Direct
joint angles mapping is typically impossible because of the
differences in the human and robot kinematics, as well as
the different weight distribution. Some approaches how to
stabilize the balance and standing poses are presented below.
The proposed in [9] approach uses a compact human model
and considers the positions of endeffectors, as well as the
center of mass as the most important aspects to imitate. This
system actively balances the center of mass over the support

polygon to avoid falls of the robot, which would occur when
using direct imitation. For every point in time, the system
generates a statically stable pose. In [10] authors propose to
use a Particle Filter (PF) for joint angle imitation. PF pro-
vides a reasonable solution with a less computational cost
to realize a real-time imitation of a humanoid robot through
observation of human demonstration. However, PF does not
provide the standing stability of the humanoid robot. Au-
thors propose a simple strategy for controlling the hip and
ankle joints to provide a reasonable standing stabilization so
that it keeps the center of mass within the supporting poly-
gon. Three relatively simple equations stabilize the robot
successfully where knee-pitch and hip-pitch angles are esti-
mated by the PF. The idea is that the length between the hip
and knee joints is almost equal to the one between the knee
and ankle joints and the triangle that consists of hip, knee
and ankle joints is an isosceles triangle. If the torso leans for-
ward while all joint angles are fixed except the hip joints, the
center of mass moves forward and eventually NAO will fall
down forward. Thus, the calculated gain for ankle pitch joint
compensates for it by adding an offset. The imitation prob-
lem presented in [11] is formulated as finding the projection
of a point from the configuration space of a human’s poses
into the configuration space of a humanoid. An optimal pro-
jection is defined as the one that minimizes a back-projected
deviation among a group of candidates, which can be deter-
mined in a very efficient way. Thus effective projections can
be obtained by using sparse correspondence. Authors claim
that the overhead of the proposed method by generating
these sparse correspondence samples for motion imitation is
very light and it fits well for different real-time applications.
The quality of a projected configuration is evaluated by two
metrics referring to corresponding ground truth and the de-
gree of maximum absolute deviation. Nierhoff in [12] draws
special focus on a complete approach to keep the shape of
the resulting motion consistent in the three domains of plan-
ning, control and reasoning. Different from conventional ap-
proaches which favor a strict separation, this work aims at
a tight coupling to keep the optimality properties consistent
for the entire process chain. Nierhoff presents a common pri-
oritized IK scheme and shows how it can be combined with
Laplacian trajectory editing for a continuous re-planning of
the desired trajectory. A lot of simulation results and issues
have been dedicated to computational complexity and possi-
ble improvements to increase the speed of the method.

To summarize, the methods for motion retargeting of-
ten suffer from smoothness in motion retargeting, certain lev-
els of latency due to computational overhead or a large set of
correspondence samples to search. Continuously changing
Kinect 3D positions used in the direct method to determine
NAO angles result in jerky movement. Teleoperation is fast
if learning algorithms are used because the system is trained
a priory and not many computations are involved in the mo-
tion retargeting, however the training can take a long time
depending on the amount of training data. Solving the IK
problem iteratively using the Jacobian matrixes are found to
be inefficient because a lot of iterations are required at each
step and the response of the robot is very slow. Moreover,

2 201716 information technologies
and control

Jacobian method blocks in singularities or in circumstances
of redundancy when unique solution is not guaranteed.

To the best of our knowledge we didn’t find related
works for Kinect–robot teleoperation based on depth data
pre-processing and motion retargeting by fuzzy logic. The
Takagi-Sugeno (T-S) fuzzy systems [15] are mainly used for
robot control, not for approximation reasoning over sensor
data, as we use it. We decided to apply it in original way
in order to make a trade-off between latency and precision
in teleoperation by approximation reasoning. T-S fuzzy in-
ference system is chosen as universal approximator since it
presents a low time response using a set of simple functions
that require low CPU and memory resources.

1.3. Design Criteria

Considering the above problem requirements, we
propose a Wireless Kinect-NAO Framework (WKNF) for
teleoperation in real-time based on Takagi-Sugeno Fuzzy
Inference System (T-SFIS). The wireless framework con-
nects middleware on Kinect side and NAO robot side to
transmit data to robot actuators. NAO desktop applications
are used in original way in the design of fuzzy rules, while
the NAO Whole Body Balancer APIs are instantiated to
generate and stabilize consistency in the desired motions.
IK and T-SFIS algorithms are online and lightweight in or-
der not to block the wireless connection to robot Python
scripts in real time.

During the design and implementation of WKNF we
found out several innovative solutions related to complex
whole-body motion retargeting that requires standing body
stabilization, view invariance and smoothness of robot
motions. WKNF works well online and is view invariant
considering the parallax effect to normalize the calculated
angles and distances. The smoothness in motion retargeting
is ensured by fuzzifying of the raw depth Kinect data and
afterward processing by median filter. Distances and angles
are calculated by vector algebra. The joint angles estimation
for motion mapping of Human to NAO movements is based
on fuzzy logic and featured angles rather than direct angles
are calculated by IK. Featured angles are stable in the vision
area of Kinect and at least one of the joints establishing the
vectors is not quickly changing joint, resulting in less scat-
tered Kinect readings. We exploit trigonometric functions
that stop amplifying the data noise. During the joint angles
calculation we observed nonlinearity in mapping of the 3D
Kinect to NAO angles in different offsets. This is as a result
of ambiguity of Kinect 3D joint coordinates in different off-
sets and parallax effect. Such nonlinearities are decomposed
and linearly approximated by T-S fuzzy rules of zero and
first order that have local support in 2D projections accord-
ing to offsets of body parts or NAO kinematic limitations.
We partition the 3D input space and decompose the mapping
in several projections such that linear approximations of un-
known mapping relation identify the number and parame-
ters of fuzzy sets and fuzzy rules. For controlling the torso
and leg joints in parallel we analyse the interdependencies

among these joints in Choregraphe – a desktop application
that allows to create animations and behaviours [14]. The
changes of joint values in time are presented by curves in
Choregraphe timeline editor. Another desktop application
is Webots for NAO [15] that offers a safe place to test be-
haviours before playing them on a real robot. Connecting
Choregraphe and Webots allows a simulation of NAO mo-
tions in a virtual world (see figure 9). If the virtual robot falls
down, when the joint interdependencies and the leg balance
with center of mass are taking into account in the python
scripts on the robot side, NAO stays within a support and
safe polygon.

2. Proposed Solutions

In WKNF for motion retargeting we have to determine
the joint angles for the robot actuators to set a desired trajec-
tory on the basic of positions and orientations of the robot
end-effectors. Fuzzy logic is adopted for estimation of joint
angles for the NAO robot to imitate the human demonstrated
posture. It provides a reasonable solution with a less com-
putational cost to realize a real-time motion retargeting on a
robot through observation of human demonstration. Since,
the T-SFIS does not provide the standing stability and there
is a high risk of NAO to fall down if it follows the joint
angles estimated by T-SFIS, we proposes a simple solution
in real-time how to control the leg joints for the standing
stabilization.

2.1. Processing Kinect Body Data
to Solve Inverse Kinematics Task

We analyse the Kinect depth and body stream data and
identify the 3D positions of upper body limbs over time.
The important joints for motion retargeting of upper limbs
are left and right shoulder, elbow, wrist and hand. During
the movement, the length and angles between each joint are
changing at each frame and some of them are considered
as important features to map the Kinect angles to angles of
robot actuators. To reduce the spikes, we apply Median filter
and we use it only for joints that are more often in “Inferred
State”, such as hand tips and thumbs. This filter doesn’t in-
troduce latency because it doesn’t take advantage of the sta-
tistical distribution of data or noise.

First we have tried to solve the problem for motion re-
targeting using direct angle analytical method. However due
to its poor performance and ambiguous results, we searched
for unique angles that can feature the movement by θ1 to
θ5 over time and map them to NAO actuator angles. Fea-
tured angles are stable in the vision area of Kinect and the
joints forming the vectors are not quickly changing joints,
resulting in less scattered Kinect readings. The extra joints
we use for motion retargeting are head, thumb and tip (see
figure 1a).

The angle between two vectors defined by the three
joints Pth, Qth and Rth with coordinates: (xp , yр , zp) (xq, yq ,

2 2017 17information technologies
and control

zq) and (xr , yr , zr), then the two vectors are (PQ) nd (QR).
The angle between them is calculated by using equation (1).

(1)

where PQ.QR is the dot product (equation 2) and

||PQ|| and ||QR|| are the lengths (equation 3)

(2)

(3)

=

During the implementation we established that the
noisy Kinect readings result in noisy calculations for dis-
tances (we use Euclidean formula) and 3D angles, diff erent
in the diff erent area of the input space. One of the reasons is
that operations to calculate body part sizes and relative po-
sitions such as addition, subtraction and multiplication, am-
plify the noise. Trigonometric functions which are typically
used for calculating joint angles aff ect the noise in diff erent
ways. We use arccosine that results in small radian values
and even decrease the noise. For unavoidable dependency
on off sets of body parts, we implement fuzzy rules that have
local support in slit planes in 2D projections (see fi gure 4).
Another reason for incorrect calculations is the observed
parallax eff ect.

a)

b)
Figure 1. a) Important joints for motion retargeting

of upper limbs; b) 3D model of the NAO right upper limb

2.2. View Invariance and Scalability

Parallax arises due to change in viewpoint occurring
to motion of the observer. Since the visual angle of an ob-
ject projected onto the retina decreases with distance, this
information can be combined with previous knowledge of
the object’s size (etalon) to determine the absolute depth of
the object. By measuring angles, and using geometry, one
can determine the length of an object – x if r is the radi-
us between the object and the eye. From the Kinect’s eye
perspective, the changes in sizes a Kinect would see when
the user move far and close we also explain with motion
parallax eff ect. Consequently, the depth coordinate Z aff ects
angle calculations because the lengths of body parts partici-
pate in the formulae. However, if we have an etalon (size(s)
taken during the Kinect calibration stage) we can measure
the change in the angle relative to human position in front
of Kinect and to correct angles on the Kinect side according
to current visual angle (αcur) using equations (4). In WKNF,
the 2D distances for closeness are normalized either by the
depth value Z (for tip and thumb joints) or by dividing to
αcur (for bigger limbs such as hip and elbow).

(4)

2.3. The Need of Fuzzy-based Reasoning

Kinect and NAO have diff erent coordinate systems, as
well as NAO has joint limitations (see fi gure 6a). Because
of the context of the application (play for children) we made
a trade-off between the precision of motion retargeting, easy
calibration and NAO response delay. We applied approximate
reasoning to handle Kinect noise readings and provide a uni-
versal approach for motion mapping instead to do a complex
calibration between Kinect and NAO coordinate systems.

→

→ →

→

(3)

=

→ →

2 201718 information technologies
and control

Fuzzy logic is a superset of classical logic with the in-
troduction of “degree of membership”. Uncertainties are pre-
sented as fuzzy sets (Ai), which are often expressed by words
and interpreted by their membership functions µA. We exploit
the Takagi-Sugeno (T-S) fuzzy model as a universal function
approximator [15]. Its structure consists of rules in the form

(5)

where x = (x1, x2,...,xn) ϵ D is a vector representing the
inputs defi ned on D. Ai is a fuzzy set defi ned on certain do-
main (D); yi is a scalar output corresponding to rule i; ai

k are
the consequence parameters associated to rule i. i ϵ {1,..., p},
where p is the number of rules. For a zero-order T-S model,
the output level y is a constant (a0 = ak = 0). The rules are
aggregated and defuzzifi ed by using the fuzzy-mean formula

(6)

where μ Aik(x) is the degree of fulfi lment of i-th rule.

where n′ is the number of input variables in i-th rule
(n′ ≤ n), T is a type of t-(co)norm as minimum, product, etc.

2.4. Generating Fuzzy Rules

During the design we identify premise and conse-
quence parameters and write a fuzzy-rules base (FRB) for
mapping angles from Kinect to NAO coordinate frames
over time. We use fuzzy trapezoidal membership functions
(simple and fast for calculation), where the upper base of
a trapezoid takes care of small scattering, i.e. ignoring the
scattering in centimetre range that cause the robot to move
abruptly while the user is barely changing pose. We ob-
served nonlinearity during the mapping for some of the
3D Kinect to NAO angles in diff erent off sets. For instance,
during the mapping of the angle values to move the hand to a
given location, NAO right shoulder roll angle (see fi gure 3b)
has constant values in diff erent hand-body off sets, while the
3D Kinect angle θ4 is changing in dependence on distances
between 2D joint positions of the right hip and elbow. The
proposed solution is to partition the 3D input space in sever-
al projections such that a linear approximation of unknown
mapping relation is possible in these ranges with accepted
error less than 5%. The goal is to obtain the premise and
consequence parameters of T-S and the required model error
ε. If the error is less than 5% zero-order T-S is used, other-
wise fi rst-order, second, etc., till the error gets below 5%.
The less rules used (i.e. coarse fuzzy partition) the bigger
error. The fi rst step is in several 2D projections to identify
the group of states having similar linear approximation of
mapping, and to distinguish these states as fuzzy sets. Their
membership functions will classify the Kinect angle in de-
grees into these fuzzy sets. The second step is to fi nd the
local approximation linear solutions and to aggregate and

defuzzifying them by equation (6). In the next Section, how
to design T-SFIS fuzzy rules is illustrated.

2.5. Stabilizing Consistency
and Balance in the Desired Motions

We proposes a simple solution in real-time how to con-
trol the leg joints for the standing poses stabilization, balance,
redundancy and task priority during the movements of the
whole body. If the upper joints can be controlled individu-
ally, the torso or leg joints have to be controlled in parallel
with other joints. For instance, the hip and knee joints are of
higher importance in squatting, however other joints as upper
limbs and ankles also need to be controlled for stability of
NAO properly. We found out an original way how to deter-
mine feature angles to facilitate the deriving of T-S fuzzy rules
by observing the changes of joint values in time presented
by curves in Choregraphe timeline editor. Such curves for
pose squat, sit down and ankle back are presented in Figure
7. In the last Section we illustrate how we solved the prob-
lem for standing stabilization by incorporating in the python
scripts on robot side the NAO Whole Body Control (WBC)
APIs [16]. Thus we stabilize the motions generated by Joint
control APIs (they control directly the position of the robot
joints) and adapt NAO’s behaviour to the situation. WBC is a
Generalized Inverse Kinematics (GIK) problem which deals
with Cartesian or Joint control, balance, redundancy and task
priority. GIK problem is written as a quadratic program which
is solved every 20 ms using the C++ open source library [17].

The classical form of a quadratic program is

(7)

Y: Unknown vector;
Ydes: Desired but not necessarily feasible solution;
Q: Quadratic norm;
A, b, C and d: Matrices and vectors which express linear
equality and inequality constraints.

For the robot NAO, the unknown vector in equation
(7) is composed of velocity of torso (3 translations and 3 ro-
tations) and velocity of all the articulated joints. The equal-
ity constraints concern keeping feet in a plane or fi xed. The
inequality constraints concern joint limits and balance. The
Center of Mass is constrained to stay within the support poly-
gon. Ydes is composed of Cartesian desired trajectories and
joints desired trajectories. The solution obtained is feasible
since it fulfi ls all the constraints and is a compromise between
the desired motions [16]. Initial motion is modifi ed to the
closest motion which respects balance and/or foot state. For
instance, it is really diffi cult to keep the feet fl at by joint con-
trol only of HipYawPitch joint (the only way to rotate the foot
of NAO). However, using with WBC the generated motion is
stable. The main goal of Balance Constraint is to maintain the
Center Of Mass (COM) of NAO inside the support polygon
that depends on supported leg ‒ both feet, left or right foot.

where x = (x) ϵ D is a vector representing the

2 2017 19information technologies
and control

3. Implementation and Evaluation

3.1. Technical Specifi cations

Kinect V2 sensor is connected to a laptop with In-
tel(R) Core (TM) i7-5500U CPU@ 2.40 GHz and transmits
sensor data to a software application running on the laptop,
built in C#, referencing Microsoft Kinect library (SDK 2.0)
and performing data pre-processing and motion retargeting.
Apart from the robot hardware and Kinect sensor, no other
hardware is used. Three middleware are connected: Kinect
SDK2 [2], NAO.NET on the Kinect side [18] and Naoqi
2.1.4 on the robot side [3]. Apart from those middleware,
the framework is built only in C# on the Kinect side and
Python scripts on the robot side. These codes run in parallel
- fi rst running on a laptop and connected to the Kinect sensor
to provide body joint tracking and fuzzy logic processing,
and second running on the robot side - waiting to receive
data from Kinect side via Wi-Fi and use it to make the move
of the robot actuators. The latency of fuzzy reasoning (how
much time it takes for robot output to catch up to the actual
human joint position when there is a movement in a joint) is
not introduced in CPU time it takes for executing the T-SFIS.
In general, the delay depends on the number of the simulta-
neously open Python scripts and the number of per frame
passing parameters to these scripts. The reasonable trade-off
between precision and latency is proven by real experiments
(), where we infer the angles for the robot actuators
over time by fuzzy reasoning via numerically processing of
the information in the fuzzy rules.

3.2. Kinect Side

On Kinect side we process the 3D coordinates of joints
at each consecutive frame. The applied Median fi lter output
is the median of the last N inputs (joint positions). It latency
depends on N and we use it only for N=20 Kinect frames.
We calculate the joint angles by analytical IK per frame.
The Kinect tracking algorithm operates in 3D camera space,
however for some off sets (such as closeness), limb sizes and
angles we use the Kinect Coordinate Mapping to project 3D
points from camera space to a row/column location in the
depth space with origin x=0, y=0 corresponding to the top
left corner of the depth image. Thus, we operate only with
positive values for joint coordinates.

Modelling of uncertainties consists of information
about linguistic variables, domains, constraints as fuzzy sets
(fi gure 3) and fuzzifi ers. The values of constraints, normalized
in the range [0-1], take part in the premise parameters in IF-
THEN fuzzy rules, such as Kinect angles and/or 2D distances.
The rules map the input values to the output space in terms of
implication relation between fuzzy sets in “IF” and functions
in “THEN” parts. Fuzzifi ed input data trigger one or several
rules in the fuzzy model to calculate the result. Two type of
functions for motion mapping of Kinect angles to NAO space
in “THEN” parts are designed: function approximation using
fi rst-order T-S model and zero-order T-S model.

Figure 2. Real experiments with children

a) for angle θ3

b) for distances in XZ slit

Figure 3. Premise parameters

To cope with the nonlinearity of the observed Kinect
angles in X and Y split planes where the 3D Kinect angles
vary (see fi gure 4), we implemented the proposed solution
to partition the 3D input space and decompose the mapping
of Kinect to NAO in the slit planes in XZ and YZ projec-
tions. We use fi rst-order T-S fuzzy rules with linguistic val-
ues in premise formed from the semantically close values
for angles in diff erent slit planes according to the closeness
of the hand to the body. Distances are normalized by current
parallax angle. Premise parameters participating in the fuzzy
rules are presented in fi gure 5. Consequences are the equa-
tions of the trend lines in decompositions.

Figure 4. Local support of features in XZ and YZ projections

tions of the trend lines in decompositions.

2 201720 information technologies
and control

Figure 5. Kinect θ4 mapping to NAO RShoulderRoll angle

HeadYaw HeadPitch Min HeadPitch Max
-119.52º -25.73 º 18.91 º
-87.49 º -18.91 º 11.46 º

and so on

a) Anti-collision limitation due to Aldebaran Table [3]

b) Consequence Parameters

c) Consequence Parameters

Figure 6. Anti-collision limitations:
HeadYaw /HeadPitch

Decomposition is used also to handle kinematic limita-
tions due to potential shell collision. They are implemented
by fuzzy rules as well. As it can be seen in fi gure 6a, at the
head level the Pitch motion range is limited according to the
Yaw value. First we map the angle HeadYaw by T-S of zero
order and then HeadPitch Min and Max according to the
fi rst order T-S functions presented in fi gure 6b and 6c). They
show how collision relations between HeadYaw and Head-
Pitch angles are approximated linearly in four semantically
closed groups (forming the premise parameters), the trend
lines (forming consequence parameters for each semantic

group), their equations and squared errors. If the error is not
acceptable, the fi rst step is repeated until deriving premise
parameters. Having premise and consequence parameters,
we write fuzzy rules for linearly approximation of nonlin-
earity. Two examples for fuzzy rules of zero and fi rst-order
T-S derived from fi gure 6c) are presented below.

R3: If μƟ1 is acute and μƟ1
 is right then Ɵ1 = 40

R4: If μƟ1
 is acute and μƟ1

 is obtuse then Ɵ1 =
= 0.3225 Ɵ2 -45.787

By using fi rst-order T-S rules rather than zero order,
we reduce the number of fuzzy sets used, respectively the
number of fuzzy rules in the whole system.

After estimating the torso and leg joints by TS-FIS, we
fi rst have tried to control them directly, however nonlinearity
from the Kinect measures in diff erent area of the input space
resulting in wrong calculated 3D angles and corresponding-
ly inconsistent NAO motions and breakdown. Instead of
partitioning the 3D input space and decomposing the map-
ping of Kinect to NAO angles in slit XZ and YZ planes to
model the compensations and scale independences, we tried
to fi nd how these joints are controlled in parallel in Choreg-
raphe in order to generate and stabilize consistent motions.
We derived the interdependencies among these joints from
the Choregraphe timeline editor to understand which one is
the feature joint angle to be estimated by TS-FIS. Observing
some motion behaviour in time, we choose one or two angles
with max deviation to be estimated by TS-FIS and calculate
the rest torso/leg angles as functions of feature angle(s). For
instance, during the squatting (fi gure 7a) the knee pitch an-
gle is changing to highest degree, then ankle pitch and hip
pitch angles. We choose left knee pitch angle as a feature
angle and then fi nd functions to calculate the rest (fi gure 8).
By analogy to anti-collision relations, these functions might
be approximated linearly (if the squared error is bigger than
5%) in several semantically closed groups to form the prem-
ise parameters, while the trend lines form the consequence
parameters for each semantic group. Part of the pseudo code
for TS-FIS on the Kinect side and interdependencies among
leg joints are given in the Appendix 1. The algorithm how to
derive whole-body relations from Choregraphe is presented
in Appendix 2.

a) Pose “squatting”

2 2017 21information technologies
and control

b) Pose “sit down”

c) Pose “ankle back”
Figure 7. Curves for poses in Choregraphe timeline editor

a) LeftKneePitch /LeftAnklePitch

b) LeftKneePitch /LeftHipPitch

Figure 8. Relations for torso and legs angles during squatting

3.3. Testing NAO Behaviour in a Virtual
World

Testing behaviours in a virtual world by connecting
Choregraphe and Webots allows to understand joint inter-
dependences to avoid real robot falling down (see fi gure 9).
For instance, when we move our knee up, the torso, legs and
feet joints have to be controlled together in order to design
stabilize animation. However, in a result of our experiments
if NAO is a little bit unbalanced in Webots, it is enough to
instantiate the whole body balance and center of mass APIs
in the python scripts. Thus, the behaviour of the real robot is
adapted to the situation.

Figure 9. Testing behaviours in a virtual world
by connecting Choregraphe and Webots Aldebaran applications

Animation mode might be used in Choregraphe on a
real robot (fi gure 10). The algorithm is similar to the de-
scribed one in Appendix 2 with the only one diff erence in

Figure 10. Creating movements from scratch using Animation
in Choregraphe

step 4. After creating movements from scratch by stiff en-
ing off all joints and changing motor positions manually, the
current joint positions are stored in several key frames by
pressing NAO start button.

b) Pose “sit down”

2 201722 information technologies
and control

3.4. Robot Side

To stabilize the standing positions we deployed WBC
– a feasible solution, since it fulfils all the constraints and
is a compromise between the desired motions. Initial mo-
tion is modified to the closest motion which respects balance
and/or foot state. We illustrate how to incorporate in the py-
thon scripts on robot side the NAO Whole Body Control
API [16]. The used methods (given in Appendix 3 in bold) in
class ALMotionProxy are:

• ALMotionProxy::wbEnable()
• ALMotionProxy::wbFootState()
• ALMotionProxy::wbEnableBalanceConstraint()

The feasibility and real time operation of the proposed
WKNF has been proven by videos in [1], Section Results>
Games for motor and cognitive rehabilitation> Imitation.
The overall latency is less than 100 milliseconds that is sug-
gested for developers.

4. Conclusion

The proposed wireless Kinect-NAO framework for te-
leoperation has been implemented and tested with children
and adults. Its feasibility and usability have been proven by
real experiments with required accuracy, view invariance,
whole-body consistency and response in real time. Struc-
tured expressions of natural language as linguistic IF-THEN
rules, flexible fuzzy sets and easy for implementation wire-
less connection to NAO middleware allow the framework
to be tried by others without detailed knowledge for video
processing, inverse Kinematic task in Robotics and fuzzy
logic. The proposed approach for NAO teleoperation using
Kinect sensor is general enough to be applied to other hu-
manoid robots.

Acknowledgments

This research is inspired by the EU COST Action No.
TD1309 „Play for Children with Disabilities (LUDI)” and
supported by the EEA grants, BG09 N D03-90/27.05.2015.

References
1. http://iser.bas.bg/METEMSS/en/.
2. http://www.microsoft.com/en-us/kinectforwindows.
3. Aldebaran NAO Humanoid Robot. URL: https://www.ald.soft-
bankrobotics.com/en/cool-robots/nao
4. Skeletal Joint Smoothing White Paper. URL: http://msdn.micro-
soft.com/en-us/library/jj131429.
5. Mukherjee, S. et all. Inverse Kinematics of a NAO Humanoid
Robot Using Kinect to Track and Imitate Human Motion. Int. Conf.
RACE 2015, 18-20 February 2015, Chennai, India, 1-7.
6. Wenbai, C. et all. Human’s Gesture Recognition and Imitation
Based on Robot NAO. – Signal Processing, Image Processing and
Pattern Recognition, 8, 2015, No. 12, 259-270.

7. Rodriguez, I. et al. Humanizing NAO Robot Teleoperation Us-
ing ROS. 14th IEEE-RAS Int. Conf. on Humanoid Robots, 18-20
November 2014, Madrid, Spain, 179-186.
8. Alibeigi, M., S. RabieeMajid, N. Ahmadabad. Inverse Kine-
matics Based Human Mimicking System Using Skeletal Tracking
Technology. – Journal of Intelligent & Robotic Systems, 85, 2017,
No. 1, 27–45.
9. Koenemann, J, F. Burget and M. Bennewitz. Real-time Imitation
of Human Whole-body Motions by Humanoids. IEEE Internation-
al Conference on Robotics and Automation (ICRA), Hong Kong,
2014, 2806-2812.
10. Kondo, Y., S. Yamamoto and Y. Takahashi. Real-time Posture
Imitation of Biped Humanoid Robot Based on Particle Filter with
Simple Joint Control for Standing Stabilization. 8th International
Conference on Soft Computing and Intelligent Systems (SCIS) and
17th International Symposium on Advanced Intelligent Systems
(ISIS), Sapporo, 2016, 130-135.
11. Shuo, J., D. Chengkai, L. Yang, C. L. W. Charlie. Motion Imi-
tation Based on Sparsely Sampled Correspondence. Technical Re-
port on arVix.org.
12. Nierhoff, T. Real-time Robotic Motion Control and Adaptation
in Constrained Environments. PhD Thesis, 2015 http://mediatum.
ub.tum.de/doc/1238415/1238415.pdf.
13. Aldebaran Choregraphe. http://doc.aldebaran.com/1-14/soft-
ware/choregraphe/choregraphe_overview.html.
14. Aldebaran Webots Overview. http://doc.aldebaran.com/1-14/
software/webots/webots_index.html.
15. Takagi, T., M. Sugeno. Fuzzy Identification of Systems and its
Applications to Modelling and Control. ‒ IEEE Trans. Sys. Man
Cyber., 1985, 15:116–132.
16. Aldebaran Documentation, NAOqi Motion, Whole Body Con-
trol. http://doc.aldebaran.com/2-1/naoqi/motion/control-whole-
body.html.
17. Ferreau, H. J., H. G. Bock and M. Diehl. An Online Active
Set Strategy to Overcome the Limitation of Explicit MPC. – IEEE
International Journal of Robust and Nonlinear Control, 2008, 816-
830.
18. Gamal, T. NAO.NET. http://www.codeproject.com/Tips/
1002530/NAO-NET-Python-programs-to-NET.

2 2017 23information technologies
and control

Appendix 1

Appendix 2

Algorithm for deriving whole-body relations in Choregraphe

1. In a new Project drag from the box library the desired
pose and connect to the main onStart;
2. Drag from Templates a Timeline and connect the time-
line box to the first box onStopped output. Right click the
box and edit to the desired pose;
3. Double click the timeline box and drag the desired pose
in it and connect to start
4. Go to the key frame bar and insert new key frame at the
desired time on the motion section. By right click store the
current joints positions in that key frame with options for
the whole body, head, arms or legs;
5. Go to the play controls (the green button) and start for
a while the NAO motion, then stop it (by the red control
button). Make the next key frame and store the current
joint values;
6. Repeat the Step 5 until reaching the end of the pose.
The number of recorded key frames depends on the de-
sired precision;
7. To analyse curves use the “pen” button on the motion
section to go to the Choregraphe Timeline Editor where by
“sinusoid” button to see the participated joints 2D graph-
ics over time.

Appendix 3

// Python script for motion mapping of Kinect feature
angles to NAO joint angles

def StiffnessOn(proxy):
pNames = “Body”
the collection of all joints
pStiffnessLists = 1.0
pTimeLists = 1.0
proxy.stiffnessInterpolation(pNames,
pStiffnessLists, pTimeLists)

def main(robotIP,Angle1,…,Angle36):

Init proxies.
try:

motionProxy = ALProxy(“ALMotion”, robotIP,
9559)

except Exception, e:
print “Could not create proxy to ALMotion”
print “Error was: “, e

Set NAO in Stiffness On
StiffnessOn(motionProxy)

Activate Whole Body Balancer
isEnabled = True
motionProxy.wbEnable(isEnabled)

Legs are constrained in a plane
stateName = “Fixed”
supportLeg = “Legs”
motionProxy.wbFootState(stateName, support-
Leg)

Constraint Balance Motion
isEnable = True
supportLeg = “Legs”
motionProxy.wbEnableBalanceConstraint(isEn-
able, supportLeg)

 # KneePitch angleInterpolation
Without Whole Body balancer, foot will fall down

names = [“RAnklePitch”,”LAnklePi-
tch”,”RKneePitch”,”LKneePitch”,”RHipYawPitch”,”L-
HipYawPitch”,”RHipRoll”,”LHipRoll”,”RHipPitch”,”L-
HipPitch”,”RAnkleRoll”,”LAnkleRoll”]

angleLists = [[Angle1, … Angle36]]
timeLists = [[3.0, 6.0, 9.0], ..,[3.0, 6.0, 9.0]]
isAbsolute = True
motionProxy.angleInterpolation(names, angleLists,
timeLists, isAbsolute)

Deactivate Whole Body Balancer
isEnabled = False
motionProxy.wbEnable(isEnabled)

2 201724 information technologies
and control

if __name__ == “__main__”:

if len(sys.argv) > 1:
Angle1 = float(sys.argv[1])
…
Angle36 = float(sys.argv[36])
robotIP = sys.argv[37]

main(robotIP, Angle1,…,Angle36)

Manuscript received on 28.02.2017

Anna Lekova, PhD, Professor and
Head of the Interactive Robotics and
Control Systems Department at Insti-
tute of Robotics, Bulgarian Academy
of Sciences. She received her MSc in
Computer Science (1988) and her PhD
in CAD/CAE/CAM from the Technical
University – Sofia (1995). Her research
interests are in fuzzy-logic for pervasive
human-robot interactions, gesture rec-
ognition, vision-based motion sensing
devices, image processing and pattern

recognition, telerobotics. She was coordinator of the EEA Grants
project METEMSS (2015-2016) with partners from the South-West
University of Blagoevgrad, Bulgaria and University of Stavanger,
Norway. In the frame of the project this paper was developed.

Contacts:
Institute of Robotics, BAS

Bl. 2, Acad. G. Bonchev St.
1113 Sofia, Bulgaria

tel: +359 887435648
e-mail: alekova.iser@gmail.com

Aleksandar Krastev, PhD, Assistant
Professor in the Interactive Robotics
and Control Systems Department at
Institute of Robotics, Bulgarian Acad-
emy of Sciences. He receives his MSc
in 2004 in Town Ecology, from the De-
partment of Ecology of the University of
Forestry – Sofia and his PhD in 2013
from the Institute of Systems Engineer-
ing and Robotics – BAS. His recent re-
search interests are in robotic systems
and interactive human-robot interfaces.

Contacts:
Institute of Robotics, BAS

Bl. 2, Acad. G. Bonchev St.
1113 Sofia, Bulgaria

tel: +359 2 870 3361
e-mail: aikrastev.iser.bas@gmail.com

Ivan Chavdarov, PhD, Associate Pro-
fessor. He received his MSc in Mechan-
ical Engineering Science (1991) and
his PhD in Robotics from the Techni-
cal University – Sofia (2004). Institute
of Systems Engineering and Robotics
(ISER) – BAS. His research interests
are in Mechatronics, robotic systems,
3D fast prototyping.

Contacts:
Institute of Robotics, BAS

Bl. 1, Acad. G. Bonchev St.
1113 Sofia, Bulgaria

tel: +359 9792422
e-mail: ivan_chavdarov@dir.bg

