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Abstract. The paper is concerned with the problem of calculating 
the bound of the throughput (THR) of a crossbar packet switch. For 
this purpose a suitable numerical procedure is used. The input data 
for the procedure are the results of computer simulations executed 
on a grid-computational structure (www.hpc.acad.bg). The model-
ing of the THR uses MiMa-algorithm for a crossbar packet switch, 
specified by the apparatus of Generalized Nets. For studying the 
stability of the numerical procedure we use a modified family of 
patterns for i.i.d. Bernoulli uniform load traffic simulation. The 
obtained results show that the numerical procedure is stable which 
means that small input perturbations result in small changes in the 
output.

1. Introduction

A crossbar packet switch maximizes the rate of data 
transfer using parallel tracks between his input and output. 
In the ideal case the switch node must send packets without 
delay and without losses. This is obtained by means of a 
conflict-free schedule calculated by the control block of the 
switch node (Scheduler – figure 1) [1,2].  

Figure 1. Third generation crossbar switch structure

From a mathematical point of view, the calculation of 
this schedule is an NP-hard task [3]. The existing approach-
es partly solve the problem by using different formal appa-
ratus [4]. The observed increase in the capacity of telecom-
munications traffic requires new algorithms, which have to 
be examined for efficiency [5]. Similar problems arise in the 
development of wireless sensor nets [6]. The efficiency of 
the node is firstly evaluated by the throughput of the switch 
[4]. In what follows the throughput will be denoted by THR.

At the stage of switch design the THR obtained by dif-
ferent algorithms is initially assessed. The THR will depend 
on the incoming traffic for a chosen algorithm. When the 
traffic model is given, the THR depends on the incoming 
intensity ρ of input lines [4].

In this paper the problem for calculation of the upper 
bound of the THR is considered. In our computations we 
use a numerical procedure [7] with input data obtained from 
high performance calculations. The computer simulation of 
the THR is executed on the grid-structure of Institute IICT-
BAS (www.hpc.acad.bg). Our modeling of the THR uses the 
“Minimum of Maxima” algorithm [8], denoted by MiMa, 
for switch with commutation field size (n x n). This algo-
rithm is specified by the apparatus of Generalized Nets (GN) 
[9]. We will investigate the stability of the numerical proce-
dure with respect to small perturbations in the input (intensi-
ty ρ) and their effect on the output (THR). For this purpose 
we use a modified family of patterns [8] for i.i.d. Bernoulli 
uniform load traffic [10] simulation with an asymptotically 
vanishing perturbation. 

2. The Problem of Throughput Upper 
Bound Computation

For a chosen traffic model, algorithm and load inten-
sity ρ, THR depends on the size of its commutation field 
n × n (n input lines, n output lines) and the size i of the input 
buffer. In practice, the THR is obtained for discrete values of 
n (2, 3, 4, 8, 16, …) and the buffer is presumable to be large. 
These data are commonly used to estimate the upper bound 
of THR for n → ∞ and i → ∞ [2,4]. 

In our simulations we examine THR for each integer 
value in the chosen intervals for n and i. The usage of the 
grid-structure for high performance computations enables us 
to perform such simulations and as a result, we can obtain a 
more accurate estimation of the upper bound.

We shall use the following definitions [11] :
Definition 1. Function f is defined as 

where n = 2, 3, … is the size of the input /output lines of the 
packet node, i = 1, 2, … is the size of the input buffer of each 
input line and 1 ≥ THR(n, i) ≥ 0.

THR with value one corresponds to the maximal nor-
malized throughput (100%). 
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Definition 2. Function V is defined as

where i → ∞ means infinitely large input buffer and n be-
longs to the interval [a, b] = [n1, n2] which is determined by 
the working range of computer simulations ‒ for size of the 
input/output lines from n1 to n2. Typically, n1 equals 2.

Thus, V(n) is the upper bound of the THR within the 
range of our simulations of the switch node.

Definition 3. The absolute upper bound U of THR is 
defined as

where i → ∞ means infinitely large input buffer and n → ∞ 
means infinitely large commutation field. 

If V(n) is known, the calculation of the U is a standard 
task. Therefore we focus on the following Problem.

Problem. Determine V(n) from known results of f(n, 
i) for THR obtained from computer simulations for n ϵ [n1, 
n2], i ϵ [i1, i2] .

We have solved this problem in two steps: establishing 
the existence of solution and calculating of the solution. We 
calculate the difference resj between two successive curves 
fj and fj+1, then calculate the ratio δj for difference resj etc. 
The description of the numerical procedure for calculating 
of V(n) is given in [11].

2. Asymptotically Vanishing 
Perturbation for Stability Analysis  
of the Numerical Pocedure

Our stability analysis is based on introducing small 
perturbations in the input traffic and estimating their influ-
ence on the outgoing throughput. The perturbations are in-
troduced in uniform load traffic as follows. We use the fam-
ily template for a uniform model Unii shown in figure 2 [8]. 
This family has ρ=100% load intensity of each input line 
(i.i.d. Bernoulli). Then, we reduce the number of requests 
in a chosen (e.g., the first) input line by one, i.e. minus one 
request. In this case the general element Ti

p for (k × k) size 
of the pattern Ui

p for the model with perturbations becomes 
as it is shown in figure 3. The resulting throughput is the 
average for n runs for each size (n × n).

 Figure 2. The family of patterns for uniform load traffic: Uni1 
and Unii

Figure 3. The part of family of patterns for uniform traffic  
with pertubations Up1 and Upi

The family of patterns Up
i corresponds to a load inten-

sity with perturbations in the first input line. For this input 
the load intensity is ρ = (100 − Θ)% where Θ is a asymp-
totically vanishing perturbation. The curves for Θ and ρ are 
shown in figure 4, where Θ = (ixn − 1)/(ixn) is normalized 
with respect to 100% (ρ = 1), i=1,2,4,8,256.

Figure 4. The curves for perturbation Θ and intensity ρ

3. Computer Simulations of Throughput

In the computer simulation we are utilizing General-
ized-Net-model of the MiMa-algorithm [12]. The transition 
to executive program from the GN-model is performed as 
in [13] using the program VFort [14]. The source code has 
been compiled by means of the grid-structure BG01-IPP of 
the Institute IICT – Bulgarian Academy of Sciences (www.
hpc.acad.bg). The resulting code is realized locally in the 
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grid-structure. The operation system is SL release 6.5. We 
used the grid-resources: 32 threads (up to 16 CPU), 12GB 
RAM. The restriction is the time for calculation (< 72 hours).

We choose value m=2 for comparison with the results 
from [11]. When m=2, then i = mp, p=0,1,2, … The initial 
estimate of the required number of curves for THR is at least 
4 starting from Pattern Up1. In these simulations we have 
obtained nine curves for nine patterns (p=0,1,2,…,8). We get 
results for Up1,…, Up256 and figure 5 shows the particular 
results for Up1, Up2. The figure 6 shows the particular results 
for Up1 and Up256. The size n varies from 3x3 to 130x130. 
The throughput is the average for n runs.

Figure 5. Throughput for uniform traffic with perturbations Up1, 
Up2

Figure 6. Throughput for uniform traffic with perturbations Up256

4. Assess the Stability of the Numerical 
Procedure for Upper Bound

We calculate the ratio δj for differences resj between 
throughput for neighboring patterns [7,11] and the obtained 
curves for δj are shown in figure 7 (for j=1) and figure 8 
(for j=7). The values of δ1 are varying above (1,5)-1, and the 
values of δ7 tend to (1,4)-1=m-1/2, which is the expected value 
without perturbation [11].

The upper boundary in case m=2 can be calculated ac-
cording to [11] as

We calculate the boundary for the last simulation 
f(n,256) (for p=8) as

Figure 7. Ratio 1/δ1 (for Up1, Up2, Up4 )

Figure 8. Ratio 1/δ7 (for Up64, Up128, Up256)

This result is shown in figure 9 and it is obtained for 
the difference δ7 which is most closely tending to m-1/2. 

Figure 9. Upper boundary V (n) for δ7 (for Up256)

For comparison, we have calculated the boundary for 
difference δ1 as

The corresponding curve is shown in figure 10. The 
results indicate that in the case of asymptotically vanishing 
perturbations in the input load intensity, the normalized out-
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going throughput tends to 1. In [8] it is shown that the upper 
bound of throughput of the MiMa-algorithm for a uniform 
traffic model is also 1. Thus, with this type of input pertur-
bations the throughput of the switch tends to its upper bound 
without perturbation. Hence, we conclude that the numerical 
procedure is stable under the described conditions.

Figure 10. Upper boundary V (n) for δ1 (from Up4)
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